Date of Award


Document Type


Degree Name

Master of Science (MS)


Electrical and Computer Engineering (Holcomb Dept. of)

Committee Member

Dr. Robert J Schalkoff, Committee Chair

Committee Member

Dr. Carl Baum

Committee Member

Dr. Brian C. Dean


EEG is the most common test done by neurologists to study a patient’s brainwaves for pre-epileptic conditions. This thesis explains an end-to-end deep learning approach for detect-ing segments of EEG which display abnormal brain activity (Yellow-Boxes) and further classifying them to AEP (Abnormal Epileptiform Paroxysmals) and Non-AEP. It is treated as a binary and a multi-class problem. 1-D Convolution Neural Networks are used to carry out the identification and classification. Detection of Yellow-Boxes and subsequent analysis is a tedious process which can be fre-quently misinterpreted by neurologists without neurophysiology fellowship training. Hence, an au-tomated machine learning system to detect and classify will greatly enhance the quality of diagnosis. Two convolution neural network architectures are trained for the detection of Yellow-Boxes as well as their classification. The first step is detecting the Yellow-Boxes. This is done by training convolution neural networks on a training set containing both Yellow-Boxed and Non-Yellow Boxed segments treated as a 2 class problem, and is also treated as a class extension to the classification of the Yellow-Boxes problem. The second step is the classification of the Yellow-Boxes, where 2 different architectures are trained to classify the Yellow-Boxed data to 2 and 4 classes. The over-all system is validated with the entire 30s EEG segments of multiple patients, which the system classifies as Yellow-Boxes or Non-Yellow Boxes and subsequent classification to AEP or Non-AEP, and is compared with the annotated data by neurologists.