Date of Award


Document Type


Degree Name

Master of Science (MS)

Legacy Department


Committee Chair/Advisor

Drymiotis, Fivos R

Committee Member

King , Jeremy

Committee Member

Skaar , Eric C


In this thesis and the contained publications, it is demonstrated that it is not only possible to improve the dimensionless figure of merit (ZT) of silver chalcogenide composites, but it is also possible to move the maximum ZT value into a more favorable temperature range for power production. It is shown that by introducing disorder, stress, and phase competition into a system, a reduction in the material's thermal conductivity can be realized. The binaries Ag2Te and Ag2Se are re-examined in detail before moving on to examine Ag2Te1-xSex composites. The maximum ZT (ZT = 0.92) of Ag2Te0.5Se0.5 is measured at T= 500 K, which is a more favorable temperature range for power production. Lastly, the high performing thermoelectric material Cu0.2Ag2.8SbSeTe2is presented, which produced a ZT = 1.75 and ZT = 1.5 at T= 680 K from its respective slow-cooled and quenched samples. These results suggest that the formation of composites is a viable way to develop a phonon-glass-electron-crystal (PGEC).

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.