Date of Award


Document Type


Degree Name

Master of Science (MS)

Legacy Department

Electrical Engineering

Committee Chair/Advisor

Schalkoff, Robert

Committee Member

Gowdy , John

Committee Member

Dean , Brian


Epileptiform transients (ETs) are an important kind of EEG signal. They have various morphologies and can be difficult to detect. This thesis describes several approaches to detecting and classifying epileptiform transients (ETs), including Bayesian classification (with Gaussian Assumption), artificial neural networks (Backpropagation FeedForward Network) and k-NNR. Various features were extracted, including the shape, frequency domain and wavelet transform coefficients. The long term goal of this research is to determine the required size of a dataset to obtain clinically significant machine classification results. The immediate goal is to identify a reasonable feature set which can achieve acceptable classification performance with reasonable computational complexity. We have explored the effect on the results by changing window size, by filtering and by adding spatial information. Unsupervised methods, e.g. clustering, have also been explored. Presently, ANN provides the best classification method using a wavelet set for the best feature set. Future directions are indicated.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.