Date of Award

5-2007

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Materials Science and Engineering

Advisor

Bhaduri, Sarit B,

Abstract

Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes.
This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn2+ ion doping and development of TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.

Share

COinS