Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Mechanical Engineering


Vahidi, Ardalan

Committee Member

Pisu , Pierluigi

Committee Member

Wagner , John R.

Committee Member

Fadel , Georges


This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today's advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle's trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information.
This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman's principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows:
First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle.
Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview.
We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow.
Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments.