Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Electrical Engineering


Pursley, Michael B

Committee Member

Russell , Harlan B

Committee Member

Noneaker , Daniel L

Committee Member

Khan , Taufiquar R


Spectrum access protocols permit secondary users to transmit on frequency bands that are not being utilized by the primary owners. A cognitive radio that wishes to transmit in a band must first decide if the band is available (i.e., not being used by the owner) and then it must periodically re-evaluate the band's availability once it begins transmitting in the band to ensure that a signal from a primary owner has not emerged. To accomplish these tasks, spectrum access protocols employ periodic sensing of the channel. Frequent sensing intervals are required to ensure that cognitive radios wishing to access the band are not disrupting transmissions by the owners of the band. Because spectrum sensing requires that radios cease transmission to observe the channel, the potential for throughput by the secondary users is reduced.
A proposed enhancement to standard spectrum access protocols is presented that permits secondary users to monitor the frequency bands while communicating. This capability increases the amount of time that radios can transmit on the band and it decreases the amount of time required to detect the emergence of transmissions by a primary owner. Both improvements are obtained via a protocol that observes statistics obtained in the receiver of the cognitive radio during packet reception. The statistics are obtained with little or no additional hardware and do not require complicated channel measurements or pilot symbols. The proposed protocol for spectrum access is applicable to both single-link networks and multi-link cooperative networks.