Date of Award

12-2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Chemical Engineering

Advisor

Harrison, Graham M

Committee Member

Hirt , Douglas E

Committee Member

Bruce , David A

Committee Member

Cox , Christopher L

Abstract

Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go 'green' has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications.
In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks® 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition.
We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the films are studied as a function of the blend composition. With increasing PHA content in the blends, the films show increases in the crystallinity and the percent elongation versus the pure materials, but decreases in both the modulus and the tensile strength. The 10% PHA blend is found to be the optimum concentration since the toughness is significantly improved without sacrificing the strength of the material. A post-processing uniaxial orientation step is also studied, and an improvement in the mechanical properties and crystallinity of the films is discovered with the largest effects observed by varying the stretch ratio. Increasing the stretch ratio resulted in an improvement in percent elongation and greater modulus, strength, and crystallinity versus the unstretched samples. Therefore, by varying the blend composition and film processing parameters, we are able to systematically manipulate the properties of the final product and therefore tailor the materials for specific applications depending on the desired properties.

Share

COinS