Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Mathematical Science


Wiecek, Margaret M

Committee Member

Dearing , Perino M

Committee Member

Fadel , Georges M

Committee Member

Saltzman , Matthew J


In recent years, emphasis has been placed on generating quality representations of the nondominated set of multiobjective programming problems. This manuscript presents two methods for generating discrete representations with equidistant points for multiobjective programs with solution sets determined by convex cones. The Bilevel Controlled Spacing (BCS) method has a bilevel structure with the lower-level generating the nondominated points and the upper-level controlling the spacing. The Constraint Controlled Spacing (CCS) method is based on the epsilon-constraint method with an additional constraint to control the spacing of generated points. Both methods (under certain assumptions) are proven to produce (weakly) nondominated points. Along the way, several interesting results about obtuse, simplicial cones are also proved.
Both the BCS and CCS methods are tested and show promise on a variety of problems: linear, convex, nonconvex (CCS only), two-dimensional, and three-dimensional. Sample Matlab code for two of these examples can be found in the appendices as well as tables containing the generated solution points. The manuscript closes with conclusions and ideas for further research in this field.