Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Mechanical Engineering


Fadel, Georges

Committee Member

Mocko , Gregory

Committee Member

Summers , Joshua

Committee Member

Wiecek , Margaret

Committee Member

Kurz , Mary

Committee Member

Blouin , Vincent


The research work presented in this dissertation focuses on the development and application of optimization and geometric algorithms to packing and layout optimization problems. As part of this research work, a compact packing algorithm, a physically-based shape morphing algorithm, and a general purpose constrained multi-objective optimization algorithm are proposed. The compact packing algorithm is designed to pack three-dimensional free-form objects with full rotational freedom inside an arbitrary enclosure such that the packing efficiency is maximized. The proposed compact packing algorithm can handle objects with holes or cavities and its performance does not degrade significantly with the increase in the complexity of the enclosure or the objects. It outputs the location and orientation of all the objects, the packing sequence, and the packed configuration at the end of the packing operation. An improved layout algorithm that works with arbitrary enclosure geometry is also proposed. Different layout algorithms for the SAE and ISO luggage are proposed that exploit the unique characteristics of the problem under consideration. Several heuristics to improve the performance of the packing algorithm are also proposed. The proposed compact packing algorithm is benchmarked on a wide variety of synthetic and hypothetical problems and is shown to outperform other similar approaches. The physically-based shape morphing algorithm proposed in this dissertation is specifically designed for packing and layout applications, and thus it augments the compact packing algorithm. The proposed shape morphing algorithm is based on a modified mass-spring system which is used to model the morphable object. The shape morphing algorithm mimics a quasi-physical process similar to the inflation/deflation of a balloon filled with air. The morphing algorithm starts with an initial manifold geometry and morphs it to obtain a desired volume such that the obtained geometry does not interfere with the objects surrounding it. Several modifications to the original mass-spring system and to the underlying physics that governs it are proposed to significantly speed-up the shape morphing process. Since the geometry of a morphable object continuously changes during the morphing process, most collision detection algorithms that assume the colliding objects to be rigid cannot be used efficiently. And therefore, a general-purpose surface collision detection algorithm is also proposed that works with deformable objects and does not require any preprocessing. Many industrial design problems such as packing and layout optimization are computationally expensive, and a faster optimization algorithm can reduce the number of iterations (function evaluations) required to find the satisfycing solutions. A new multi-objective optimization algorithm namely Archive-based Micro Genetic Algorithm (AMGA2) is presented in this dissertation. Improved formulation for various operators used by the AMGA2 such as diversity preservation techniques, genetic variation operators, and the selection mechanism are also proposed. The AMGA2 also borrows several concepts from mathematical sciences to improve its performance and benefits from the existing literature in evolutionary optimization. A comprehensive benchmarking and comparison of AMGA2 with other state-of-the-art optimization algorithms on a wide variety of mathematical problems gleaned from literature demonstrates the superior performance of AMGA2. Thus, the research work presented in this dissertation makes contributions to the development and application of optimization and geometric algorithms.