Date of Award

12-2022

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Electrical and Computer Engineering (Holcomb Dept. of)

Committee Chair/Advisor

Rajendra Singh

Committee Member

Zheyu Zhang

Committee Member

G. Kumar Venayagamoorthy

Committee Member

Jiangfeng Zhang

Abstract

Increase in greenhouse gas emission poses a threat to the quality of air thus threatening the future of living beings on earth. A large part of the emission is produced by transport vehicles. Electric vehicles (EVs) are a great solution to this threat. They will completely replace the high usage of hydrocarbons in the transport sector. Energy efficiency and reduced local pollution can also be expected with full implementation of electrification of transportation. However, the current grid is not prepared to take the power load of EV charging if it were to happen readily. Moreover, critics are doubtful about the long-term sustainability of EVs in terms of different supply chain issues.

The first step for tackling this problem from a research perspective was to do a thorough review of the details of charging in modern day grid. The downsides and lack of futuristic vision. Findings showed that implementing end to end DC based on green energy aided by SiC power electronics. To prove the findings analysis and modelling was done for SiC based charging network. A similar approach was implemented in EV powertrain development.

The implementation of SiC power electronics in charging network showed lesser losses, higher thermal conductivity, lesser charging time. The effect on long term battery health and additional circuit was also observed. The cost of production can be reduced by volume manufacturing that has been discussed. In powertrain analysis and simulation the loss and heat reduction one shown on a component-by-component basis.

Therefore, this research proposes a Silicon Carbide based end to end DC infrastructure based completely on solar and wind power. The pollution will further be reduced, and energy demands will be met.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.