Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Human Centered Computing

Committee Chair/Advisor

Nathan J. McNeese

Committee Member

Guo Freeman

Committee Member

Bart Knijnenburg

Committee Member

Marissa Shuffler


It is well understood that teams are essential and common in many aspects of life, both work and leisure. Due to the importance of teams, much research attention has focused on how to improve team processes and outcomes. Of particular interest are the cognitive aspects of teamwork including team mental models (TMMs). Among many other benefits, TMMs involve team members forming a compatible understanding of the task and team in order to more efficiently make decisions. This understanding is sometimes classified using four TMM domains: equipment (e.g., operating procedures), task (e.g., strategies), team interactions (e.g., interdependencies) and teammates (e.g., tendencies). Of particular interest to this dissertation is accelerating the development of teammate TMMs which include members understanding the knowledge, skills, attitudes, preferences, and tendencies of their teammates. An accurate teammate TMM allows teams to predict and account for the needs and behaviors of their teammates. Although much research has highlighted how the development of the four TMM domains can be supported, promoting the development of teammate TMMs is particularly challenging for a specific type of team: temporary teams.

Temporary teams, in contrast to ongoing teams, involve unknown teammates, novel tasks, short task times (alternatively limited interactions), and members disbanding after completing their task. These teams are increasingly used by organizations as they can be agilely formed with individual members selected to accomplish a specific task. Such teams are commonly used in contexts such as film production, the military, emergency response, and software development, just to name a few. Importantly, although these teams benefit greatly from teammate TMMs due to the efficiencies gained in decision making while working under limited deadlines, the literature is severely limited in understanding how to support temporary teams in this way. As prior research has suggested, an opportunity to accelerate teammate TMM development on temporary teams is through the use of technology to selectively share teammate information to support these TMMs. However, this solution poses numerous privacy concerns. This dissertation uses four studies to create a foundational and thorough understanding of how recommender system technology can be used to promote teammate TMMs through information sharing while limiting privacy concerns.

Study 1 takes a highly exploratory approach to set a foundation for future dissertation studies. This study investigates what information is perceived to be helpful for promoting teammate TMMs on actual temporary teams. Qualitative data suggests that sharing teammate information related to skills/preferences, conflict management styles, and work ethic/reliability is perceived as beneficial to supporting teammate TMMs. Also, this data provides a foundational understanding for what should be involved in information-sharing recommendations for promoting teammate TMMs. Quantitative results indicate that conflict management data is perceived as more helpful and appropriate to share than personality data.

Study 2 investigates the presentation of these recommendations through the factors of anonymity and explanations. Although explanations did not improve trust or satisfaction in the system, providing recommendations associated with a specific teammate name significantly improved several team measures associated with TMMs for actual temporary teams compared to teams who received anonymous recommendations. This study also sheds light on what temporary team members perceive as the benefits to sharing this information and what they perceive as concerns to their privacy.

Study 3 investigates how the group/team context and individual differences can influence disclosure behavior when using an information-sharing recommender system. Findings suggest that members of teams who are fully assessed as a team are more willing to unconditionally disclose personal information than members who are assessed as an individual or members who are mixed assessed as an individual and a team. The results also show how different individual differences and different information types are associated with disclosure behavior.

Finally, Study 4 investigates how the occurrence and content of explanations can influence disclosure behavior and system perceptions of an information-sharing recommender system. Data from this study highlights how benefit explanations provided during disclosure can increase disclosure and explanations provided during recommendations can influence perceptions of trust competence. Meanwhile, benefit-related explanations can decrease privacy concerns.

The aforementioned studies fill numerous research gaps relating to teamwork literature (i.e., TMMs and temporary teams) and recommender system research. In addition to contributions to these fields, this dissertation results in design recommendations that inform both the design of group recommender systems and the novel technology conceptualized through this dissertation, information-sharing recommender systems.

Author ORCID Identifier




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.