Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)


Electrical and Computer Engineering (Holcomb Dept. of)

Committee Chair/Advisor

Dr. Johan H. Enslin

Committee Member

Dr. Ramtin Hadidi

Committee Member

Dr. Zheyu Zhang

Committee Member

Dr. Shuangshuang Jin


The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired and logical solution. This dissertation is focused on the design and evaluation of a power electronics-based module integrated between the neutral of power transformers and substation ground. The proposed module transforms conventional transformers into hybrid smart transformers (HST). The HST enhances power system protection against DC flow in grid that could result from solar storms, high-elevation nuclear explosions, monopolar or ground return mode (GRM) operation of high-voltage direct current (HVDC) transmission and non-ideal switching in inverter-based resources (IBRs). The module also introduces a variety of advanced grid-support features in conventional transformers. These include voltage regulation, voltage and impedance balancing, harmonics isolation, power flow control and voltage ride through (VRT) capability for distributed energy resources (DERs) or grid connected IBRs. The dissertation also proposes and evaluates a hybrid bypass switch for HST module and associated transformer protection during high-voltage events at the module output, such as, ground faults, inrush currents, lightning and switching transients. The proposed strategy is evaluated on a scaled hardware prototype utilizing controller hardware-in-the-loop (C-HIL) and power hardware-in-the-loop (P-HIL) techniques. The dissertation also provides guidelines for field implementation and deployment of the proposed HST scheme. The device is proposed as an all-inclusive solution to multiple grid problems as it performs a variety of functions that are currently being performed through separate devices increasing efficiency and justifying its installation.

Author ORCID Identifier




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.