Date of Award

8-2018

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Mathematical Sciences

Committee Member

Dr. Svetlana Poznanović

Committee Member

Dr. Neil Calkin

Committee Member

Dr. Wayne Goddard

Committee Member

Dr. Matthew Macauley

Abstract

A classical result of MacMahon shows the equidistribution of the major index and inversion number over the symmetric groups. Since then, these statistics have been generalized in many ways, and many new permutation statistics have been defined, which are related to the major index and inversion number in may interesting ways. In this dissertation we study generalizations of some newer statistics over words and labeled forests.

Foata and Zeilberger defined the graphical major index, majU , and the graphical inversion index, invU , for words over the alphabet {1, . . . , n}. In this dissertation we define a graphical sorting index, sorU , which generalizes the sorting index of a permutation. We then characterize the graphs U for which sorU is equidistributed with invU and majU on a single rearrangement class.

Bj¨orner and Wachs defined a major index for labeled plane forests, and showed that it has the same distribution as the number of inversions. We define and study the distributions of a few other natural statistics on labeled forests. Specifically, we introduce the notions of bottom-to-top maxima, cyclic bottom-to-top maxima, sorting index, and cycle minima. Then we show that the pairs (inv, BT-max), (sor, Cyc), and (maj, CBT-max) are equidistributed. Our results extend the result of Bj¨orner and Wachs and generalize results for permutations.

Lastly, we study the descent polynomial of labeled forests. The descent polynomial for per-mutations is known to be log-concave and unimodal. In this dissertation we discuss what properties are preserved in the descent polynomial of labeled forests.

Share

COinS