Date of Award

5-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Electrical and Computer Engineering

Committee Member

Dr. Eric G. Johnson, Committee Chair

Committee Member

Dr. Richard J. Watkins

Committee Member

Dr. Goutam Koley

Committee Member

Dr. Lin Zhu

Abstract

Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional – acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.

Share

COinS