Date of Award


Document Type


Degree Name

Doctor of Philosophy (PhD)

Legacy Department

Computer Engineering


Shen, Haiying

Committee Member

Wang , Kuang-Ching

Committee Member

Smith , Melissa C

Committee Member

Apon , Amy


Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay.
In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes.
Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors.
Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate.
The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications.