Title

Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels

Description

Optical microangiography (OMAG) is a powerful optical angio-graphic tool to visualize micro-vascular flow in vivo. Despite numerous demonstrations for the past several years of the qualitative relationship between OMAG and flow, no convincing quantitative relationship has been proven. In this paper, we attempt to quantitatively correlate the OMAG signal with flow. Specifically, we develop a simplified analytical model of the complex OMAG, suggesting that the OMAG signal is a product of the number of particles in an imaging voxel and the decorrelation of OCT (optical coherence tomography) signal, determined by flow velocity, inter-frame time interval, and wavelength of the light source. Numerical simulation with the proposed model reveals that if the OCT amplitudes are correlated, the OMAG signal is related to a total number of particles across the imaging voxel cross-section per unit time (flux); otherwise it would be saturated but its strength is proportional to the number of particles in the imaging voxel (concentration). The relationship is validated using microfluidic flow phantoms with various preset flow metrics. This work suggests OMAG is a promising quantitative tool for the assessment of vascular flow.

Publication Date

1-1-2016

Publisher

figshare Academic Research System

DOI

10.6084/m9.figshare.c.3753365.v1

Document Type

Data Set

Identifier

10.6084/m9.figshare.c.3753365.v1

Embargo Date

1-1-2016

Share

COinS