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Figure 6.17: Matrix Multiplication Application Performance Per Core on KNC

Figure 6.18: Matrix Multiplication KNL Application Performance Per Core on KNL

The average execution time was found to be 56.9 seconds with standard deviation of

2.276.

Figure 6.18 shows the performance of the application on the cores of the KNL.

The average execution time on the KNL was 33.5% faster than KNC with an average

execution time of 38.07 seconds. We observed than on this application only cores 17,

34 and 51 had a notable performance difference with their average execution times

being 4.67% 3.98% and 3.94% slower than the average performance time of 38.07

seconds. The standard deviation found for the results on KNL was 0.57.
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Figure 6.19: Matrix Multiplication KNC Performance With Multiple Inputs

6.4.2 Matrix Multiplication Core Variation Scale

Figure 6.19 shows the variability among KNC cores as we increased the input

size for the matrix multiplication. For each input size the performance difference from

the fastest executing core was within a constant threshold for all cores. It was however

notice that as we increase the input size the performance difference decreased. The

average performance difference was 9.80%, 8.11%, 6.40%, 3.35% and 3.28% for input

sizes 3000, 4500, 6000 and 9000 respectively.

The results for the sparse matrix to matrix multiplication on KNL scaled

with input sizes between 3000 and 9000 as can be seen in Figure 6.20. Performance

difference on cores 17, 34 and 51 were observed with all input sizes with the execution

time being around 6% slower. The percentage difference was constant at an average

of 1.21% unlike the decreasing trend observed in the KNC.

6.4.3 Matrix Multiplication KNC Hardware performance

Figure 6.21 and Figure 6.22 shows the CPI and execution time of a trial of

the matrix multiplication application. The implementation will have some latency
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Figure 6.20: Matrix Multiplication KNL Performance With Multiple Inputs
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Figure 6.21: Matrix Multiplication Execution Performance Per Core of a Trial Run
on KNC

factors as is suggested by the high CPI Rate between 6.5 and 7. We however notice

that the CPI rate trend on the cores correlates with the trend of the execution time

performance. This highlights that when number of instructions is directly related to

frequency at which the core is performing; the core performance is more consistent.

This leads to other architectural elements such as the bus interconnect; having a

reduced impact on performance.
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Figure 6.22: Matrix Multiplication CPI Performance Per Core of a Trial run on KNC

6.5 Speckle Reducing Anisotropic Diffusion

6.5.1 Speckle Reducing Anisotropic Diffusion Performance

On KNC and KNL

Figure 6.23 shows that the execution time performance of the SRAD on the

Xeon phi was relatively constant between 120 seconds and 128 seconds. The standard

deviation of the execution times was found to be 1.64. The average execution time

for the performance on this application was found to be 123 seconds.

Similar results can also be see in Figure 6.24 showing the execution times of

SRAD on the KNL. The standard deviation of SRAD performance was found to be

0.54 and has an average execution time of 70.88 seconds. Unlike the other applications

with variation on cores 0, 17, 34 and 51; this application only exhibits performance

variation on core 0. Core 0 performed 3.2% faster than the average performance of

the other cores.
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Figure 6.23: SRAD Application Performance Per Core on KNC
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Figure 6.24: SRAD Application Performance Per Core on KNL
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Figure 6.25: SRAD KNC Performance With Multiple Input

6.5.2 Speckle Reducing Anisotropic Diffusion Core Variation

Scale

As we scaled the input sizes for the SRAD on the KNC, the performance

difference remained under 4% slower than the fastest trial. This can be seen in

Figure 6.25 an it shows that the constant performance observed in 5 trials holds for

any input sizes.

Figure 6.26 shows that the performance of the SRAD application is constant

among all cores except 0 as we scale the input sizes. We scaled the input from 1000

iterations to 3000 and core 0 performed between 2% and 4% faster than the other

cores in executing the application.

6.5.3 Speckle Reducing Anisotropic Diffusion KNC Hard-

ware performance

SRAD is structured grid algorithm that a wider array of image manipulations

in sequential stages. Based on the nature of image processing, memory affects the

execution of the SRAD algorithm out of all the application. This application had
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Figure 6.26: Percentage Execution time Difference From Minimum Execution Time
For SRAD
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Figure 6.27: SRAD L1 Cache Performance Per Core on KNC

the most variation and lowest L1 hit rates among all the applications as can be seen

in Figure 6.27. It also had the lowest latency impact with an average of 190 as can

be seen in Figure 6.28. There where no observable trends regarding the Bandwidth.

The combination of memory access to cache and synchronization lead to a constant

bottleneck on performance leading to the cores performing relatively the same.
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Figure 6.28: SRAD L2 Cache Performance Per Core on KNC

6.6 LavaMD

6.6.1 LavaMD Performance On KNC and KNL

Figure 6.29 shows the execution time of the LavaMD application on the dif-

ferent cores on the KNC. We found the average execution time to be 56.95 seconds

for the cores with a standard deviation of 0.783. The Figure also shows than there

are random outliers throughout the trials within the same performance range of 58.5

seconds.

Figure 6.30 shows the execution time performance of the lavamd application

on the KNL. This application has an average performance of 44.5 seconds however

core 0 performs 4% faster than this average. Cores 17, 34, 51 are also distinctively

with them performing 2.91%, 2.97% and 2.94% slower than the other cores. The

standard deviation for the execution of this application on the KNL’s was found to

be 0.783.
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Figure 6.29: Lavamd Application Performance Per Core on KNC
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Figure 6.30: Lavamd Application Performance Per Core on KNL
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Figure 6.31: Percentage Execution time Difference From Minimum Execution Time
on KNC

6.6.2 LavaMD Core Variation Scale

Figure 6.31 and Figure 6.32 shows the performance of the Lavamd application

as we scaled the input size from 15 boxes to 30 on the KNC and KNL respectively.

The performance difference between cores scaled proportional on both KNC and

KNL. The kNC showed performance variation below 8% with majority of the cores

performing close to the fastest execution time. The KNL showed performance varia-

tion below 11%. Majority of the cores had a performance time difference of 4% from

best execution times which were on core 0. Cores 17, 34 and 51 were approximately

6% slower than the fastest execution time.

6.6.3 LavaMD KNC Hardware performance

Lavamd is a nbody application which is a high flops computational algorithm.

Figure ?? shows the execution time and Figure 6.34 shows the CPI rate of a sample

execution of the application on each core. This correlation between CPI and execution

leads to more consistent performance as the instructions executed directly relates to
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Figure 6.32: Percentage Execution time Difference From Minimum Execution Time
For Lavamd on KNL
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Figure 6.33: Lavamd Execution Performance Per of a trial Core on KNC

operating frequency of the core. Other architectural features such as bandwith, cache

access were relatively constant.
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Figure 6.34: Lavamd CPI Performance Per Core of a trial on KNC

6.7 Particle Filter

6.7.1 Particle Filter Performance On KNC and KNL

Figure 6.35 shows the execution time performance of the particle filter on the

KNC. This application performed very constant over all the cores with a standard

deviation of 0.268. The average execution time for this application was 58.63 seconds

which was 20.45% slower than the average execution time performance on the KNL’s.

The performance per core on the KNL’s had a similar trend as the Lavamd and

NW application as cane be seen in Figure 6.36. The first core performs 1.8% faster

than all the cores. Cores 17, 34 and 51 performed 3.4%, 1.78%, 1.82% slower than

all the cores. The standard deviation of the execution time performance on the KNL

was 1.22 which was higher than KNC due to the previously noted cores performance

variability.
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Figure 6.35: Particle Filter Application Performance Per Core on KNC
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Figure 6.36: Particle Filter Application Performance Per Core on KNL
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Figure 6.37: Particle Filter KNC Performance With Multiple Inputs

6.7.2 Particle Filter Core Variation Scale

Figure 6.37 shows the performance of the particler filter application as we

scale the input sizes. In our 5 trials that we used we noticed that the execution time

performance was fairly constant with no distinctive performance variations. This is

also seen per input size as the percentage difference from the fastest time is within a

particular threshold. We however notice that as the input sizes increase the percentage

difference from the fastest executing core is gradually decreasing. As the input sizes

increases the percentage difference were 0.81%, 0.65%, 0.57% and 0.57%.

We also notice a similar trend with decreasing percentage difference as we

scale our input on the KNL. Figure 6.38 shows the results when we scale the input

on KNL’s. We can observe the same trend with core ) performing fastest and cores

17, 34, 51 consistently slow at all the input sizes. From taking the averages of the

performance difference from minimum execution time we saw the reduction in this

percentage as we scaled up. The average performance difference were 4.41%, 2.85%,

1.93% and 1.77% for input sizes of 15000, 2000, 25000 and 30000 respectively.
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Figure 6.38: Particle Filter KNL Performance With Multiple Inputs
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Figure 6.39: Particle Filter Execution Time Performance Per Core on KNC

6.7.3 Particle Filter KNC Hardware performance

Particle filter is a dynamic programming algorithm which does a lot of com-

putation in comparison to the NW application. Figure 6.39 and Figure 6.40 shows

the execution time and CPI performance respectively of a sample trial. The cores

performance is randomly distributed within a time range and the CPI correlates with

these performance. This means that the operating frequency is proportional to the

rate at which instructions are being retired.
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Figure 6.40: Particle Filter CPI Performance Per Core on KNC

6.8 Breadth First Search

6.8.1 Breadth First Search Performance On KNC and KNL

Figure 6.41 shows the performance execution time of Breadth First Search

application on KNC. The execution time performance is constant over all the cores in

the KNC with an average execution time of 186.71 seconds and a standard deviation

of 3.30.

The performance was similar for the BFS application on the KNL as can be

seen in Figure 6.42. It had an execution average time of 55.94 seconds with an average

standard deviation of 4.85.

6.8.2 Breadth First Search KNC Hardware performance

Figure 6.43 and Figure 6.44 shows the execution time and CPI performance of

a trial run on the KNC. This application has a direct correlation between operating

frequency and the number of instructions to be retired. This leads to a constant

execution time range and other hardware components such as L1 and L2 hit ratio,
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Figure 6.41: Breadth First Search Application Performance Per Core on KNC
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Figure 6.42: Breadth First Search Application Performance Per Core on KNL
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Figure 6.43: BFS Execution Performance Per Core on KNC
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Figure 6.44: BFS CPI Performance Per Core on KNC

bandwidth remaining constant.

6.9 KNC Multi Core Xeon Phi Power and Perfor-

mance

After analyzing all the application performance on the Xeon phi KNC; we

noticed that majority of the application had a somewhat constant performance with

only two application distinctively exhibiting performance degradation going out ward
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from cores 10 to 40. Utilizing this knowledge we executed a series of power and

performance trials on the applications utilizing various core combinations. We choose

core combinations of 1 - 60 (base configuration), 10 - 40 (middle cores) and 1 - 9 +

41 - 60(outer cores). We compared our latter two trials execution time and power

consumed to our core combination of 1 - 60. In each core configuration we choose the

optimal thread configuration to give us the best execution time and the results are

shown in table 6.1. The applications BFS, NMyocyte and Needle were not included

in the results because the core utilization was under 5 percent for these applications.

This low core utilization lead to the power consumed being constant with the system

power consumption due to lack of core usage.

Our results showed we had a 16.4% and 15.6% energy reduction while using

middle cores, 14.9% and 11.6% energy reduction while using outer cores for the appli-

cation streamcluster and particle filter respectively. The energy performance savings

was expected for the streamcluster application based on the KNC trial results results.

For the Particle filter application this was however not expected as the results showed

constant performance when we did our trials. This result may due to the fact that the

particle filter is a dynamic programming algorithm like the NW application. The NW

application did show similar trial results to streamcluster. The difference between the

NW and particle filter application is that there is a higher amount of computation

and core utilization with particle filter than with NW. As a result of this the per core

trial did not show the performance variation due to the high computation. However

When the application is however ran on many cores it exhibits the energy saving

characteristics but not the performance improvement due computation intensity.

The applications Matrix multiplication, LavaMD and SRAD performed within

a 2% energy consumption difference for the outer and middle core configurations. The

application performance for Streamcluster, Matrix Multiplication, and SRAD were
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Table 6.1: Performance and Power consumption for Applications on KNC

Application Cores Thread
Power
(Watts)

Execution
Time (s)

Percent Energy
Efficiency

Percentage
Performance
Difference

LavaMD 1 - 60 244 55485 160.937607 0% 0%
10 - 40 120 55516 284.913 0% 44%
1 - 9,
41 - 60

120 56220 287.424 1% 44%

Matrix
Multiplication

1 - 60 244 139612 271.630308 0% 0%

10 - 40 120 138586 285.145608 -1% 5%
1 - 9,
41 - 60

120 140313 286.716225 0% 5%

Particle Filter 1 - 60 120 21781 111.21714 0% 0%
10 - 40 120 18836 212.6887 -16% 48%
1 - 9,
41 - 60

120 18958 217.253967 -15% 49%

StreamCluster 1 - 60 240 56069 224.76294 0% 0%
10 - 40 120 48179 220.173186 -16% -2%
1 - 9,
41 - 60

120 50255 224.15 -12% 0%

SRAD 1 - 60 240 52111 194.96469 0% 0%
10 - 40 120 51999 195.03065 0% 0%
1 - 9,
41 - 60

120 53081 196.141647 2% 1%

within 5% of the optimal execution time of our base configuration. The applications

Lavamd and particle filter had bad performance results with execution times 44% and

48.5% slower respectively, than our base configuration.

6.10 Summary

This chapter details the results collected after running all the application

benchmarks on the Xeon Phi architectures. The architecture features which influ-

enced the performance of the applications in single core and multicore executions are
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discussed. The information obtained from the KNC results were used to improve

energy performance on this architecture and information provided on the influence of

applications performance.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this research we explore the per core performance of the Xeon Phi Knights

Corner (first generation MIC) and the Xeon Phi Knights Landing (second generation

MIC). Eight applications from the Rodinia Benchmark were implemented and tested

to derive insights into how the MIC cores individually perform on these architectures.

The results indicate that application characteristics impact or affect how they per-

form on a given core; some applications perform fairly consistently across all cores

while others exhibit varying results. Lastly, there were some unique characteristics

consistently exhibited by certain cores.

On the KNC architecture, the applications Needleman-Wunsch and Stream-

Cluster performed better on the middle cores (10 - 40) with the performance gradually

decreasing outwards to core 0 and core 60 on either side of the ring. This phenomon

was seen throughout our trials and across various input sizes. The performance differ-

ence between cores extend to about 5% from the fastest execution time. The cause of

this performance was due to the ring architecture of the KNC using Distributed Tag
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Directories for cache-to-cache transfer, which enharently leads to reduced bandwidth

at the outermost cores.

The applications BFS, Myocyte, LavaMD and Matrix Multiplication all per-

formed fairly consistantly within a given time range. This performance was due to

a direct correlation between the retired instructions and the operating frequency at

which the core is retiring them. As a result other architectural features of the hard-

ware has a reduced impact, which is observed as the latency impact: l1 hit ratio and

bandwidth are fairly constant during the execution of the application.

The Particle Filter and SRAD applications also had a constant execution time

within constant time period. Their performance was correlated to the programming

implementation on the hardware. The L1 and L2 cache variation performance with

and high core utilization flops calculation lead to constant performance. The Particle

Filter is also a dynamic programming algorithm as is NW, but the high core utiliza-

tion and flops calculation lead to the memory not being the determining factor for

performance. These results show that there are variations within the KNC cores that

are dependent on how the application utilizes the architecture of the KNC.

Utilizing this knowledge we implemented a performance and power execution

analysis on the KNC processors using configurations of the middle cores (cores 10 -

40), outer cores (cores 0 - 9, 41 - 59) and base cores (0 - 59). We used all applications

except the BFS, Myocyte and NW applications as those had low core utilization

leading to very little affects on the power consumed during their execution on many

cores. Our results showed about 16% reduction in the energy consumed while having

a small impact on the execution time for the Streamcluster application. There was

also a similar reduction in the energy consumed for the Particle Filter application but

a major performance degrade of about 48%.

On the KNL architecture, three trends in application performance were noted.
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The applications BFS and SRAD had core execution times that were constant over

the application time; similar to the results from the KNC generation. The only

exception being core 0 on the SRAD application performing faster than the other

cores. For applications LavaMD, Particle Filter, and NW, core 0 also performed

faster than the other cores; however cores 17, 34 and 51 were all consistently slower

than the other cores. The applications Matrix Multiplication and Streamcluster had

core 0 performing relatively consistant with the other cores while cores 17, 34 and 51

performed significantly slower.

Myocyte however had core 0 performing just as slow as 17, 34 and 51 com-

pared to the other cores. With the above applications on the KNL architecture, the

behavior or trends for Myocyte, BFS and NW are interesting based on their algo-

rithmic properties and features observed from the KNC architecture execution. This

bahavior may be no coincidence since these applications had extremely low utilization

on the KNC architecture.

These results show that cores 0, 17, 34 and 51 on the KNL Xeon Phi has some

characteristics or features that lead to interesting variation in performance. Investi-

gation is beyond this research, but may be a result of some additional instructions

or features added to these particular nodes to make the KNL architecture capable of

the different memory modes in the ring mesh interconnect.

7.2 Future Work

This research uncovered many interesting characteristics and features regard-

ing how the Xeon Phi KNC and KNL processors perform on a per core level. However,

much work remains to further understand these architectures in general, and the per

core performance power relation and its affect on full core application runs.

69



During this research, hardware information was collected using VTune but

information for the KNL generation was limited due to the inconsistancy of VTune

on Stampede. In the future, more hardware results for these architectures are needed

to understand why cores 0, 17, 34 and 51 have such performance variations. Other

analysis should include details of the applications, to quantify how flops, non-flops

and other application characteristics influence the Xeon Phi performance. These pa-

rameters can be collected using the PAPI performance API on Stampede and utilized

to predict best suited applications using the Tesseract modeling framework [6].

Currently there are only 8 applications evaluated in this research. To better

understand the performance across domains, the number of applications should be

increased to obtain more variety and more accurate information of how aspects of

different applications map to these architectures.

An analysis of power and performance behaviours utilizing all cores except 0,

17, 34 and 51 on the KNL generation compared to utilizing all cores on the KNL

would also shed light on the different behaviour of these cores, providing insight

onto whether the results from the KNC power performance study was mainly due to

architecture or with application affects on hardware. More detailed analysis should

also reveal how core variations impact performance on the different memory modes

and cluster modes of the KNL architecture.
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[21] Enzo Rucci, Carlos Garćıa, Guillermo Botella, Armando De Giusti, Marcelo R.
Naiouf, and Manuel Prieto-Mat́ıas. First experiences optimizing smith-waterman
on intel’s knights landing processor. CoRR, abs/1702.07195, 2017.

[22] Subhash Saini, Haoqiang Jin, Dennis Jespersen, Samson Cheung, Jahed
Djomehri, Johnny Chang, and Robert Hood. Early multi-node performance
evaluation of a knights corner (knc) based nasa supercomputer. In Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop, IPDPSW ’15, pages 57–67, Washington, DC, USA, 2015. IEEE Com-
puter Society.

[23] Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S.
Müller. Assessing the Performance of OpenMP Programs on the Intel Xeon Phi,
pages 547–558. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[24] H. Wang, H. Chen, Q. Wu, J. Lin, X. Chen, X. Xie, R. Wang, X. Tang, and
Z. Wang. Accelerating the global nested air quality prediction modeling system
(gnaqpms) model on intel xeon phi processors. Geoscientific Model Development
Discussions, 2017:1–18, 2017.

[25] Cheng Zhang, Li Liu, Ruizhe Li, and Guangwen Yang. Performance Character-
ization and Optimization for Intel Xeon Phi Coprocessor, pages 16–33. Springer
International Publishing, Cham, 2015.

73


