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ABSTRACT 

A significant amount of the energy used in the United States comes from nuclear power, which 

produces a large amount of waste materials. Recycling nuclear waste is possible, but requires a 

way to permanently fix the unusable radionuclides remaining from the recycling process in a 

stable, leach resistant structure. Multiphase titanate ceramic waste forms are one promising 

option under consideration. However, there is insufficient work on the long term corrosion of the 

individual phases, as well as the multiphase systems of these ceramics.  

These multiphase titanate ceramic waste forms have three targeted phases: hollandite, 

pyrochlore, and zirconolite. Hollandite is a promising candidate for the incorporation of Cs, while 

pyrochlore is readily formed with lanthanides, such as Nd, the most prevalent lanthanide in the 

waste stream. The third targeted phase, zirconolite, is for the incorporation of zirconium and the 

actinides. This work looks into the formation of single phase systems of lanthanide titanates, 

formation of dual phase systems of Ga doped Ba hollandites and Nd titanate, durability of single 

phase hollandites and multiphase model systems using Vapor Hydration Testing (ASTM C 1663-

09), dissolution of dual phase systems of Ga doped Ba hollandites and Nd titanate using Product 

Consistency Testing (ASTM C 1285-02), as well investigating how grain size affects amount of 

alterative phases formed using Vapor Hydration Testing. 

The dual phase systems of hollandites and Nd titanate show significant amounts of secondary 

phases forming, heavily influenced by the composition of hollandite used in the systems. The most 

significant phase present was BaNd2Ti5O14. This phase proves to be problematic due to the 

degradation to the hollandite structure.  

Using Vapor Hydration Testing to investigate single and multiphase systems presented many 

some possible alteration phases that could occur in the long term aging of these ceramics. Most 

notably, Cs rich phases were found in nearly every system, meaning that different hollandites 

produced similar phases. 

Using Product Consistency Testing to investigate dissolution in dual phase systems of hollandites 

and Nd titanate led to the conclusion that as the volume fraction of hollandite increases, so does 

the stability of the hollandite in the systems. 
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Chapter 1. Introduction 

1.1 Background 

Increased attention has been given to the development of materials that serve as alternatives to 

glass waste forms currently being employed for nuclear waste immobilization. In the United States 

approximately 20% of the energy produced is nuclear, with 100 working nuclear power plants. In 

South Carolina, there are four working nuclear plants, producing about 55% of the state’s net 

energy1. With a significant portion of the United States’ energy coming from nuclear energy, it is 

important to minimize waste. There are two different types of nuclear waste: defense waste and 

commercial waste. Defense waste is waste remaining from atomic energy defense, while 

commercial is nuclear waste produced from nuclear fission reactors. The Nuclear Waste Institute 

states the nuclear industry produces approximately 2,000 tons of used nuclear fuel each year2, 

and this number could be reduced. 

According to Lerner3 at Argonne National Laboratory, used nuclear fuel rods could be recycled 

and separated into useable fuel and unusable waste. There are a few processes that have been 

investigated for recycling used nuclear fuel, however the TRUEX-TALSPEAK are both industrially 

used and being considered for by the U.S. Department of Energy4. Transuranic Extraction (TRUEX) 

is a process that involves extracting the lanthanides and minor actinides, while the Trivalent 

Actinide-Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes 

(TALSPEAK) process separates the methods minor actinides from the lanthanides. These 

processes are one of the most promising methods of recycling used nuclear fuel, however this 

would require a durable waste form to immobilize the remaining unusable waste material.  
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Currently, nuclear waste is stored in glass waste forms where the radionuclides are suspended in 

a glass matrix. One issue with the currently employed glass waste forms is the questionable long 

term durability in repositories, showing leaching of radionuclides5,6, which is caused by 

unfavorable crystallization that forms nepheline and spinel during processing7. These crystallized 

phases weaken the glass network, leading to increased leaching. To combat this problem, this 

work looks to investigating a multiphase crystalline ceramic waste form, where radionuclides are 

incorporated into the crystal structures, which can be placed in a geological repository and remain 

for long periods of time with minimum leaching. One promising ceramic waste form is a durable 

multiphase titanate ceramic composed of zirconolite, hollandite, and perovskite/pyrochlore, and 

rutile. Some secondary phases have been also known to occur. These phases are capable of 

incorporating a large variety of the elements present in nuclear waste, and may be more stable in 

many harsh environments, compared to glass, because they are naturally forming crystalline 

structures. Zirconolite is targeted to incorporate the zirconium transition metal and actinides, 

hollandite is targeted to incorporate cesium, strontium, and possibly other alkalis, and 

pyrochlore/perovskite is used to incorporate the rare earths.8,9,10,11 

There are uncertainties in the understanding of the corrosion of the multiphase ceramic waste 

forms and their resistivity to leaching in an aqueous environment. Work has been done on single 

phase corrosion of titanate ceramic using various corrosion tests, as well as some work on 

multiphase titanate ceramics. However, no work has been done examining the interactions 

between just two different phases at a time. In order to understand the corrosion of these 

multiphase titanate ceramic waste forms there must be a clear understanding of single, dual, and 

multiphase titanate ceramics and how each phase competes with one another during formation. 
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This information coupled with knowledge of the resistivity to aqueous leaching and corrosion of 

each phase individually, in pairs, and as multiphase ceramics could provide understanding of the 

corrosion mechanics of these waste forms. 

1.2 Single Phases 

Multiphase titanate ceramic waste forms consist of three targeted phase: pyrochlore/perovskite, 

hollandite, and zirconolite. These three targeted phases are for the incorporation of different 

radionuclides in the waste stream, which are gone into detail in this section. 

A. Pyrochlores/Perovskites 

Pyrochlore is one of the target phases of the multiphase crystalline ceramic waste forms that is 

used to incorporate lanthanides9. The general formula of pyrochlore is A2B2O7, where A+3  is a 

lanthanide(La, Pr, Ce, Eu, Nd, Sm, Gd, Dy, Yb, Y)11,12 and B+4  is tetravalent titanium. These 

pyrochlores have been easily formed using many different methods such as solid-state 

synthesis13, coprecipitation14, melt9, hydrothermal15, and even as a single crystal16,. Pyrochlores 

are essentially an anion-deficient fluorite lattice where 1/8th of the anions are systematically 

absent17. 

Perovskites, with general formula ABO3, are also a possible target phase of multiphase crystalline 

ceramic waste forms. Actinides can be immobilized in the perovskite structure, similar to 

pyrochlores8,10.  Perovskite or pyrochlore formation is dictated by the partial pressure of oxygen 

utilized during synthesis. If calcination occurs in an oxygen rich environment, the resulting 

structure is pyrochlore14, however, calcination in an atmosphere with a low partial pressure of 

oxygen will cause the tetravalent titanium to reduce to titanium(III) forming perovskite18. 
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B. Hollandite 

Hollandite, specifically barium hollandite, is another target phase of multiphase crystalline 

ceramic waste forms for the incorporation of cesium, as well as strontium and other alkalis9,11,19. 

Barium hollandite ((BaxCsy)(M, Ti)8 O16 where M= (Al, Mn, Fe, Ga, Cr, Sc, Mg)+3 is a prime candidate 

for incorporation of cesium and barium ions due to the ability to substitute cesium in place of 

barium and  trap electrons during decay19. However, new research shows that pure cesium 

hollandite can be achieved with no barium in the structure20. 

C. Zirconolite 

Zirconolite is the third targeted phase of multiphase crystalline ceramic waste forms, specifically 

for incorporation of zirconium and tetravalent actinides9,21. Zirconolite (CaZrTi2O7) can substitute 

actinides into calcium and zirconium sites making it able to incorporate a variety of radionuclides. 

Zirconolite is a derivative of the pyrochlore structure and therefor also acts as a secondary host 

for rare earth elements and tetravalent actinides9,21,22. Kesson et al21 extensively studied the solid 

solution characteristics of zirconolite an incorporated many different ions from the nuclear waste 

stream into the structure of zirconolite successfully. What makes zirconolite so stable is that only 

about a 50% occupancy of Ti-sites need to be occupied by Ti+4 to keep the zirconolite structure. 

The Ca-site does not appear to destabilize the zirconolite structure if occupied by elements other 

than calcium, as long as they are close in size21. 

1.3 Multiphase Ceramic Waste forms 

The three popular phases, previously discussed, of multiphase ceramic waste forms have the 

ability to stabilize almost all high level radioactive wastes10. Many previous researchers have done 
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work on multiphase ceramic waste forms8,9,10,11,22,23 , however, detailed studies of phase stability 

between pyrochlore, hollandite, and zirconolite are required to ensure proper incorporating of 

radionuclides24 as well as focusing on the durability and leachability of the multiphase ceramic 

waste forms.  

A problem that commonly occurs during processing of the multiphase crystalline ceramic waste 

forms is the formation of non-desirable secondary phases. Smith et al8, while performing SEM on 

samples of SYNROC, one type of multiphase titanate ceramic waste form, discovered multiple 

other phases such as intermetallic alloy particles, grains of calcium aluminum titanate, titanium 

aluminate, and others8. Understanding the relationships between phases could help to minimize 

the formation of these secondary phases. 

1.4 Experimental Procedures  

A. Vapor Hydration Testing 

Vapor Hydration testing (VHT) is a method to study the corrosion and alteration of waste glass 

and ceramics by mimicking the humid environment where waste forms are stored25,26. Monolithic 

samples are suspended inside of 304L stainless steel vessel by platinum wire that is tied to 

stainless steel stand that is placed in the vessel, seen in Figure 1-1. An amount of water is added, 

depending on the volume of the vessel and temperature the test is performed at, to achieve 100% 

humidity inside of the reaction vessel. This humidity inside of the chamber causes a thin layer of 

water to condense on the surface of the sample(s) giving the potential to react to them, depicted 

in Figure 1-2. There is no standard time or temperature for the test to be carried out at, periods 

of up to seven years26 and temperatures anywhere from 40 °C27 to 300 °C28 have been reported. 

There are also many reported ways to examine the specimens after vapor hydration testing such 
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as EDS, optical microscopy, SEM, and XRD25,26,29. For SEM and EDS, the sample are marked for 

locating the same locations before and after testing.  It has also been reported to use multiple 

samples of the same glass specimen in the same container25. All of these variations in test 

procedure make different specimens hard to compare, however the purpose of VHT is to generate 

larger alteration layers and more secondary phase formation30 giving more insight into the long 

term corrosion of crystalline ceramic waste forms 

 

Figure 1-1. Depiction of the experimental setup for vapor hydration testing. 
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Figure 1-2. Cartoon of VHT showing the formation of thin water layer that occurs while testing 
and alternative phases that are remaining.  

Ceramics 

Buck et al22 performed vapor hydration testing on Pu-bearing zirconolite-rich SYNROC for 35 days 

at 200 °C and examined the surface alteration using TEM, reproduced in Figure 1-3. There 

appeared to be a 100-200nm thick alteration layer on the surface of the ceramic. This layer 

suggests that dissolution occurred and this alteration layer was found to be high in Pu, but this is 

not believed to have come from the zirconolite phase in the SYNROC.  Secondary phases present, 

including an iron rich material containing Pu were found to have precipitated on the zirconolite 

surface- no corrosion of the zirconolite parent phase was found. 

Bourcier31 reported VHT tests on zirconolite ceramics. Tests were performed at 200 °C and the 

results showed an alteration zone that contained small amounts of phosphates and iron oxides, 

which were presumed to be impurities in the ceramic, seen in Figure 1-4. 
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Figure 1-3. TEM micrographs of Al-Bearing Titanate (left) and Zirconolite crystal (right), both 

showing surface alteration22. Reproduced Without Permission. 

  

 

Figure 1-4. Ti-enriched layer in contact with a corroded zirconolite surface from a 200 °C VHT31. 

Reproduced Without Permission. 

Glasses 

In comparison, waste glasses examined after VHT exhibit a larger alteration area in a less amount 

of time. Neeway et al29 performed vapor hydration tests on French reference nuclear waste glass 

SON68 using temperatures from 90 °C to 200 °C as well as varying time periods from 57 days to 
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512 days. On one of the samples, the researchers performed EDS topography, where an aluminum 

and silicone layer formed as well as a gel layer consisting of alteration products, seen in Figure 1-

5. 

 

Figure 1-5. Profile of the layers formed after VHT on SON68 waste glass after held for 99 days 

at 175 °C and a relative humidity of 92%29. Reproduced Without Permission. 

At present, a comparison of VHT for SYNROC versus waste glass is difficult to a lack of available 

data. While VHT has been done many times on waste glasses, there has been very little performed 

on SYNROC and its constituent phases. Each of the individual phases need to be extensively 

examined for corrosion, as well as bulk samples of SYNROC to determine what possible alteration 

and secondary phase formation could be expected in long term corrosion.  The lack of existing 
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literature motivates systematic studies on single, dual, and multiphase samples as a function of 

composition and microstructure. 

B. Product Consistency Testing 

The Product Consistency Test (PCT) is a method to examine the quantitative dissolution of 

elements over time. The samples are typically crushed into a fine powder, with a known particle 

size, and placed inside of a 304L stainless steel reaction vessel along with demineralized water, 

depicted in Figure 1-6. There is a standard PCT-A and a non-standard PCT-B test. PCT-A is done 

specifically at 90 °C for exactly seven days with a water/sample mass ratio of 10:1. While the PCT-

B test has no set time, temperature, or any other controlled variables32. Once the tests are run for 

set time period, the leachate is collected and analyzed using ICP-MS. 

 

Figure 1-6. Cartoon depiction of PCT testing showing elemental dissolution over time. 

Single Phase Testing 

Carter et al33 performed PCT-B testing on single phase hollandites, specifically Al and Mg 

hollandites. Instead of rinsing the 100-200 mesh particles with deionized water, cyclohexane was 
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used to prevent preleaching of Cs. These samples were then leached in 10 ml of deionized water 

for seven days. 

James et al34 performed PCT-B on U-containing pyrochlores, specifically, Ca1.25U0.75 Ti2O7 and 

Ca1.40U0.7Ti1.90O7. The PCT-B protocol involved using crushed samples of 100-200 mesh, then 

washing the particles in cyclohexane. The testing was carried out by 1 g of powder to 10 mL of DI 

water at 90 °C for 7 days. The normalized concentration of U leached over the seven day period 

was found to be 2.5*10-5 g/L for Ca1.25U0.75 Ti2O7 and 1.2*10-5 g/L for Ca1.40U0.7Ti1.90O7. James et al 

state that these concentrations are significantly less than synthetic brannerite (UTi2O6), which is 

another possible phase for the immobilization of U in SYNROC. 

Multiphase Testing 

Brinkman et al35 and Billings et al36 used PCT-B to examine Cs leeching in deionized water out of 

multiple different multiphase SYNROC formulations.  Structural and chemical analysis of the 

materials systems indicated preferential Cs-Mo association and the absence of a Cs-containing 

hollandite phase.  This resulted in poor aqueous durability and motivated improved formulations 

for Cs-containing hollandites that are compatible with a melt and crystallization process11, 37–39. 

These multiphase sample compositions can be seen, along with the normalized concentration of 

Cs, in Table 1-1.  

Ringwood et al10 also examined Cs leeching in a SYNROC multiphase sample, however instead of 

normalized mass loss rates being reported, plateau leech rates were reported which were said to 

be achieved in approximately three weeks for samples. This makes it difficult to compare with 

other reported mass loss rates since there is no exact time period reported. 
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Crum et al40 used PCT-B testing to examine Cs leeching on glass ceramic composites for 3 and 28 

days. The three glass ceramic composites had varying compositions and had similar leach rates, 

seen in Table 1-1. The Cs showed preferential portioning into the glass phase of the multiphase. 

Table 1-1. PCT-B Results for elemental loss in powdered samples all performed in Deionized 
Water. Concentrations labeled with *1 next to them are Normalized Mass loss (g/m2). 

Element Compound Structure 
Temperature 

(°C) 
Time 
(d) 

Normalized 
Concentration 

(g/L) 
Reference 

Cs 
Single 
Phase 

Hollandite 

Al-18 Hollandite 90 7 6.20E-01 

41 
Al-12 Hollandite 90 7 5.20E-01 

Mg-18 Hollandite 90 7 1.30E+00 

Mg-12 Hollandite 90 7 2.80E+00 

Cs 
Glass 

Ceramic 
Composite 

5.86% MoO3 90 3 1.40E-01 

40 

6.25% MoO3 90 3 1.50E-01 

6.94% MoO3 90 3 2.70E-01 

5.86% MoO3 90 28 1.90E-01 

6.25% MoO3 90 28 1.30E-01 

6.94% MoO3 90 28 1.80E-01 

Cs 
Multiphase 

Ceramic 

CSLNTM-02 90 7 2.88E+00 *1 
35 CSLNTM-06 90 7 3.34E+00 *1 

CSLNTM-11 90 7 9.62E+00 *1 

Cs 
Multiphase 
Ceramic 

CS/LN-03 90 7 4.41E+01 

36 

CS/LN-04 90 7 3.24E+01 

CS/LN-05 90 7 4.48E+01 

CS/LN/TM Mo-02 90 7 3.80E+01 

CS/LN/TM Mo-03 90 7 2.81E+01 

CS/LN/TM Mo-04 90 7 2.37E+01 

CS/LN/TM Mo-05 90 7 2.51E+01 

U Pyrochlore 

Ca1.25U0.75 Ti2O7 90 7 2.50E-05 
34 

Ca1.20U0.70 Ti2O8 90 7 1.20E-05 
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1.5 Experimental Summary 

Outlined in Figure 1-7, this work will begin with single phase studies of lanthanide titanates, 

specifically Nd and La titanates and Ce brannerite. Next, dual phase studies of these lanthanide 

titanates and Ga doped Ba hollandites were fabricated and characterized, followed by 

dissolution testing using PCT. Finally, durability studies were conducted on multiphase model 

systems, as well as some single and dual phase samples for comparison, using VHT. 

 

Figure 1-7. Map of experiments beginning with single phase fabrication to durability testing. 
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Chapter 2. Synthesis/Processing 

2.1    Single Phase Studies of Lanthanide Titanates 

Single phase titanate structures were fabricated in order to provide a baseline comparison for 

model multiphase systems. The three lanthanides neodymium, lanthanum, and cerium were 

selected for this study first because they are the three most prevalent lanthanides in the waste 

stream11. Neodymium (III) oxide (Nd2O3), lanthanum oxide (La2O3), and cerium (II) oxide (CeO2) 

were individually mixed into batches with titanium oxide and ethanol. The batches were then ball 

milled five times for one minute intervals. The batches were strained and removed from the ball 

mill containers using more ethanol and then allowed to dry in an oven at 90 °C for 24 hours. After 

drying, the batches were pulverized with a pestle and mortar and pressed into pellets. 

Approximately three, two gram pellets were made from each batch. Each pellet was calcined for 

four hours at 1000 °C, 1200 °C, and 1400 °C, as shown in Table 2-1. 

Table 2-1. Temperatures of calcination for the single phase systems 

 Titanates 

 Neodymium Cerium Lanthanum 

Hours 4 h 4 h 4 h 

Te
m

p
er

at
u

re
 1000 °C 1000 °C 1000 °C 

1200 °C 1200 °C 1200 °C 

1400 °C 1400 °C 1400 °C 
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After calcination, the pellets were pulverized with a pestle and mortar. Next, powder X-ray 

diffraction (XRD) was ran on the samples using Cu radiation. The samples were then examined 

using SEM and EDS analysis. 

 

Figure 2-1. XRD spectra for neodymium titanate samples that were calcined at 1000 °C, 1200 °C, 
and 1400 °C compared to ICSD database file 4133 for a monoclinic neodymium titanate.  
Nd2O3 (ICSD 32514);  TiO2 (ICSD 64987). 
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Figure 2-2. SEM image and EDS elemental analysis on Nd titanate formed at 1200 °C. 

 

Table 2-2. Summary Table of the phases found for each sample at each temperature 
(*Crystalline phases determined by XRD results and EDX elemental analysis) 

Oxide mixed with TiO2 Temperature (°C) Phase* 

Nd2O3 
1000 

 Nd titanate 
+Nd2O3+TiO2 

1200  Nd titanate 

1400 Nd titanate 

La2O3 
1000 

La titanate 
+Nd2O3+TiO2 

1200 La titanate 

1400 La titanate 

CeO2 

1000 CeO2+TiO2 

1200 CeO2+TiO2 

1400 Melted 
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In Figure 2-1, the XRD spectra for the neodymium titanate samples that were calcined at 1000 °C, 

1200 °C, and 1400 °C are shown compared to a Nd titanate from the ICSD file 4133. The SEM 

image and EDS analysis is shown in Figure 2-2 for Nd titanate calcined at 1200 °C, showing a pure 

phase Nd titanate was achieved. In Table 2-2 is a summary Table of all the samples of Nd, La, and 

Ce phases confirmed using XRD, SEM, and EDS. 

 

Figure 2-3. XRD spectra for lanthanum titanate samples that were calcined at 1000 °C, 1200 °C, 
and 1400 °C compared to ICSD database file 1950 for lanthanum titanate.  TiO2 (ICSD 64987). 
Peak labeled with a * is an unidentified peak. 
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Figure 2-4. SEM image and EDS elemental analysis on La titanate formed at 1200 °C. 

Lanthanum titanate samples calcined at 1000 °C, 1200 °C, and 1400 °C are shown in Figure 2-3 

compared to the XRD spectra of La titanate (ICSD # 1950). As seen the 1000 °C sample is not a 

pure phase titanate with some TiO2 peaks present, however at temps above this a pure phase is 

achieved, supported by SEM and EDS data seen in Figure 2-4. These results are similar to what 

was seen while forming Nd titanate, which was expected with both having a +3 valence. 

Cerium, however, is slightly different because at room temperature cerium has +4 charge instead 

of +3 like neodymium and lanthanum. This causes the cerium(IV) oxide and titanium(IV) oxide to 

form CeTi2O6 instead around 1350 °C42–44. Samples were calcined at 1000 °C, 1200 °C, and 1400 °C 

to begin. The samples calcined at 1000 °C and 1200 °C were both matched to the starting materials 

CeO2 and TiO2 with the Jade database, shown in Table 2-2, and the 1400 °C sample melted. 



19 
 

However, another sample calcined at 1350 °C for four hours, the XRD pattern shown in Figure 2-

5, was matched to uranium brannerite, UTi2O6  (ICSD # 201342). Ce is a well-known substitute for 

U, proving that a cerium brannerite was achieved. However, some TiO2 and CeO2 precursors 

remained in the sample.  

 

Figure 2-5. The sample of CeO2 and TiO2 that was calcined at 1350C for four hours and is matched 
to a Brannerite crystal structure ICSD file 201342.  CeO2 (ICSD 32514);   TiO2 (ICSD 64987). 
 
However, when processed under reducing conditions, Ce titanates can become more 

unpredictable. Ce and Ti both being able to have a valence of +3 or +4 making multiple possible 

phases that can form, such as Ce2TiO5, Ce2Ti2O7 or related structure Ce4Ti9O24
42. 
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Some lanthanides, such as Ce, with a +4 valence that have the potential to form a number of 

different phases, depending on processing conditions, causes some uncertainties in the stability 

of multiphase ceramic waste forms. At most temperatures, in air, Ce+4 is most stable as CeO2 

unless rapidly cooled or at certain temperature ranges42–44. Elements like Ce make processing 

multiphase ceramic waste forms with vast variety of elements difficult to prepare, study, and 

compare. 

2.2 Dual Phase studies of Lanthanide titanates and Ga doped Ba Hollandite 

One of the large gaps in the available literature on crystalline ceramic waste forms is the stability 

during processing and storage, including how each phase reacts individual with another. To 

examine how model binary phases interact, a Ga doped Ba hollandite was mixed with three 

different lanthanide titanates and heated to see if a reaction would occur. The Ba hollandite 

chosen was a common Ba/Cs ration that is found in literature19, Ba1.04Cs.24Ga2.32Ti5.68O16. This 

hollandite was mixed in a 50/50 volume ratio with three different lanthanide titanates: 

neodymium, lanthanum, and cerium. The mixtures were heated in a furnace for four hours and 

characterized using XRD and SEM. The hollandite and lanthanides were fabricated by an oxide 

route and calcined to achieve single phase materials.  

For comparison, the same experiment was repeated, but instead of crystalline hollandite and 

lanthanide titanate the precursors (Nd2O3, TiO2, BaCO3, etc.) to them were used in the same 

stoichiometric portions and 50/50 volume fraction. These were heated to see if the same 

crystalline phases could be achieved. This comparison of starting phases is important for 

crystalline ceramic waste forms because some waste forms are with crystalline materials and 

densified, while others with start with slurries of oxides or nitrates and then melt.  
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Table 2-3. Crystalline vs. Raw Powder systems of Ga doped Ba hollandite and lanthanide 
titanate mixtures. 

Ba hollandite + 
1200 °C 

Cry. 
1300 °C 

Cry. 
1400+ °C 
Cry. 

1200 °C 

 Raw 
Powders 

1300 °C 

Raw 
Powders 

1400+ °C 

Raw 
Powders 

Nd2Ti2O7 X X Melted X X Melted 

La2Ti2O7 X X Melted X X Melted 

CeTi2O6 X X Melted X X Melted 

 

Shown in Table 2-3, all the samples melted at 1400 °C, which could possibly due to eutectics 

forming in the dual phase system. The Ga doped hollandite has a melting temperature around 

1415 °C. Next, to examine whether the reaction was complete after four hours, one sample of 

each the crystalline phases and raw powder precursors was heated to 1300 °C for 12 hours.  

Figure 2-6 shows the XRD results for the crystalline Nd titanate and Ga doped Ba hollandite 

mixtures after heating. It should be noted that the sample was processed at 1300 °C for four hours 

has an XRD spectra that was matched to large aluminum peaks. This is an experimental artifact 

from x-rays hitting the aluminum sample pan and should be ignored. Otherwise, the two samples 

processed at 1300 °C are almost identical and indicate the phase assemblage of matched phases 

BaNd2Ti5O14 (Jade PDF #33-0166), Nd2Ti2O7 (ICSD# 4133), Ba1.143Fe2.286Ti5.71O16 Hollandite (ICSD# 

68730), and Nd4Ti9O24 (ICSD# 72316). The system that was heated to 1350 °C is a sample from the 

PCT section discussed later in the chapter, which shows identical peaks to the 1300 °C systems. 

The last sample, 4 hours at 1200 °C, show similar phases as well, however the Nd titanate and 

hollandite peaks seem to be more dominate than the other phases found in the 1300 °C samples. 
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To confirm the XRD spectra matches, shown in Figure 2-7 is SEM and EDS of the dual phase 

systems were performed, serves as an example of how all systems phases where confirmed. In 

this particular system, which corresponds to ND-BH-CRYS-1350 in Figure 2-6, hollandite, Nd 

titanate, and BaNd2Ti5O14 can be seen along with what appears to be a small amount of a Ga rich 

phase. The phase labeled 1 is identified as hollandite, where phase 2 is identified as Nd titanate, 

however it is not only Nd2Ti2O7, but appears to be a mixture of Nd2Ti2O7 and Nd4Ti9O24, and phase 

3 is identified as BaNd2Ti5O14. These phases were determined with the aid of a location specific 

EDS tool on the SEM that gives an atomic percentage in a location from counts in the EDS.  

To begin, the Nd2Ti2O7 and Nd4Ti9O24 mixture explains where the Nd is coming from to form the 

BaNd2Ti5O14. As the BaNd2Ti5O14 is formed the Nd is taken from the Nd titanate structure causing 

the shift from Nd2Ti2O7 to Nd4Ti9O24, which is an orthorhombic structure. Also, as BaNd2Ti5O14 is 

formed and the hollandite structure is broken down, the Ga and Cs are left in another separate 

titanate. This did not show up on the XRD results, which could possibly be due to only being a 

small amount of the sample so the reflections are so weak they do not appear on the spectra, or 

it could possibly share peaks with other phases in the sample. It should also be noted that the Ti 

and Ba energies overlap, so the Ba map is identical to the Ti. 
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Figure 2-6. XRD patterns for Nd titanate and Ga doped Ba hollandite formed using crystallized 
precursors.  Aluminum (ICSD # 64700);  Nd4Ti9O24 (ICSD# 72316). 
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Figure 2-7. SEM and EDS images of a sample of dual phase Nd titanate and Ga doped Ba 
hollandite mixed in a 50/50 volume fraction, using the crystalline phases as the precursors, and 
then sintered at 1350 °C for 4 hours. Phase 1 is identified as hollandite, phase 2 being a mixture 
of Nd2Ti2O7 and Nd4Ti9O24, and phase 3 identified as BaNd2Ti5O14. 
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 Shown in Figure 2-8 are the XRD results for the raw powders of Nd titanate and Ga doped Ba 

Hollandite mixtures after heating. Starting with the precursors of the two crystalline phases 

seemed to make no difference for the formation of phases as the phases formed at each 

temperature and time is identical to the results from the crystalline mixtures. 

 

Figure 2-8. XRD spectra comparison for raw powder precursors of neodymium titanate and 
barium hollandite.  Nd4Ti9O24 (ICSD# 72316). 

 Table 2-4 is summary Table on all of the raw powder precursors and crystallized samples and the 

phases that were found using XRD. Seen in Figure 2-9, the crystallized precursors of lanthanum 
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titanate and barium hollandite had no reaction at 1200 °C. At 1300 °C, a new phase was formed, 

La0.66TiO2.993 (found in Jade database, card # 26-0827), which is an orthorhombic perovskite 

structure. This would imply that that the titanium went under a reduction from Ti4+ to Ti3+ and the 

monoclinic titanate structure transitioned to a perovskite structure.  

The raw powder precursor samples, however, had many different phases form at both 1200 °C 

and 1300 °C. Shown in Figure 2-10, at 1200 °C similar phase that formed in the Nd samples are 

present, La2Ti2O7, hollandite, and the same BaNd2Ti5O14 (Jade PDF #33-0166). However, at 1300 

°C the same perovskite phase from the crystalline precursor samples begins to form, meaning that 

the reduction of the Ti occurred in this sample as well. Other phases accompany the La perovskite 

in the 1300 °C raw powder precursor sample, including La2Ti2O7, hollandite, BaNd2Ti5O14, and 

some Nd4Ti9O24.  
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Figure 2-9. XRD spectra for crystalline powders of lanthanum titanate and barium hollandite 
compared to La2Ti2O7 (ICSD # 1950), Ba1.143Fe2.286Ti5.71O16 hollandite (ICSD# 68730), and 
La0.66TiO2.993 (Jade database, card # 26-0827). 
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Figure 2-10. XRD spectra for raw powder precursors of lanthanum titanate and barium 
hollandite compared to La2Ti2O7 (ICSD # 1950), Ba1.143Fe2.286Ti5.71O16 Hollandite (ICSD# 68730), 
BaNd2Ti5O14 (Jade PDF #33-0166), Nd4Ti9O24 (ICSD# 72316), and La0.66TiO2.993 (Jade database, 
card # 26-0827).  Nd4Ti9O24 (ICSD# 72316). 

 

The cerium brannerite mixed with hollandite had no reaction, whether the starting materials were 

crystalline or not. The raw powder samples formed hollandite, CeO2, and TiO2. While the 

crystalline cerium brannerite and barium hollandite remained as brannerite and hollandite. 

Table 2-4. Summary Table of the dual composition phase results matched using XRD spectra. 
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-All samples 
mixed with 
Hollandite     

Titanate Used 
CRYS or 

RAW 
Temperature 

( °C) 
Time 

(hours) Matched Phases 

Nd2Ti2O7 

CRYS 1200 4 

All contained: 
BaNd2Ti5O14, 
Hollandite, 

Nd2Ti2O7 

 

CRYS 1300 4 Nd4Ti9O24 

CRYS 1300 12 Nd4Ti9O24 

CRYS 1350 4 Nd4Ti9O24 

RAW 1200 4  

RAW 1300 4 Nd4Ti9O24 

RAW 1300 12 Nd4Ti9O24 

La2Ti2O7 

CRYS 1200 4 La2Ti2O7, Hollandite 

CRYS 1300 4 Hollandite, La0.66TiO2.993  

RAW 1200 4 Hollandite, La2Ti2O7, BaNd2Ti5O14 

RAW 1300 4 
BaNd2Ti5O14, Nd4Ti9O24, Hollandite, 

La2Ti2O7, La0.66TiO2.993  

CeTi2O6 

CRYS 1200 4 
Hollandite, Brannerite 

CRYS 1300 4 

RAW 1200 4 
Hollandite, CeO2, TiO2 

RAW 1300 4 

 

In summary, there were some new phases that form in these dual phase systems. Nd titanate and 

Ga doped Ba hollandite systems, accompanied by Nd titanate and hollandite, all formed a 

BaNd2Ti5O14 phase, some systems accompanied with a Nd4Ti9O24 phase. As the hollandite 

structure is broken down and BaNd2Ti5O14 is formed, which caused Nd2Ti2O7 to transition to 

Nd4Ti9O24, as well as a possible Ga and Cs titanate to form.  

In the lanthanum titanate and Ga doped Ba hollandite systems the samples starting with the raw 

precursors formed identical phases to the Nd titanate samples, but in the systems using the 

crystalline phases as precursors, the La titanate underwent a reduction to a La perovskite. This is 

not an unfavorable phase in multiphase systems, however, if something is reducing, than 

something has to be oxidizing which could have a large impact on a multiphase system.  
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In the Ce titanate and Ga doped Ba hollandite systems, no reaction was seen regardless of the 

precursors. 

Dual Phase samples for PCT testing 

As previously stated, Nd was chosen to fabricate the lanthanide titanate to continue with further 

testing because it is the most prominent lanthanide in the waste stream. To begin sample 

preparation for PCT testing, a dilatometer was used on the dual phase system of Nd titanate and 

Ba1.04Cs.24Ga2.32Ti5.68O16 hollandite to obtain a curve that related temperature to density. This was 

done in order to calculate what sintering temperature is required to achieve sample density above 

80%. PCT requires approximately 15 g of each sample to run the test in triplicate. PCT samples 

consisted of single phase hollandite and Nd titanate, along with mixtures in varying volume 

fractions, as seen in Table 2-5. The dual phase samples were mixed thoroughly by ball milling in 

ethanol for 24 hours. The mixtures were strained and the milling balls and milling container were 

rinsed with ethanol to collect all of the mixture and then dried in an oven at 90 °C for 24 hours to 

remove the ethanol. These powders were pulverized and pressed into pellets and then sintered. 

The single phase hollandite and all the dual mixtures were sintered at 1350 °C to have little 

variation in processing. The single phase Nd titanate, however, required a higher sintering 

temperature and was sintered at 1400 °C. 
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 Table 2-5. List of samples prepared for PCT testing.  

Samples 
Phase 

type 
Chemical Formula 

Volume Fraction 

H/P 

Sample 

Name 

Ga Hollandite 1 Single Ba1.04Cs0.24Ga2.32Ti5.68O16 100/0 H1 

Ga Hollandite 2 Single Ba.667Cs.667Ga2Ti6O16 100/0 H2 

Nd Titanate Single Nd2Ti2O7 0/100 P1 

Ga Hollandite + 

Nd Titanate 
 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
70/30 HP1 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
50/50 HP2 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
30/70 HP3 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
70/30 HP4 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
50/50 HP5 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
30/70 HP6 

 

As discussed previously, it is clear the dual phase systems are not staying dual phase systems, but 

instead splitting into multiphase systems. The second hollandite used in the dual systems being 

used for PCT testing, Ba.667Cs.667Ga2Ti6O16, has also been examined using XRD to determine if other 

phases formed upon heating. It does appear that similar phase, such as Nd2Ti2O7, hollandite, 

BaNd2Ti5O14, and possible Nd4Ti9O24, do form upon heating the crystalline phases together at 1350 

°C and the amount of phases were estimated using Jade software and will be discussed later in 

the section 2.3. 
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To perform PCT testing, the samples had to be crushed into a powder with a particle size 

distribution +100/-200. First, a mechanical crusher to break up the pellets of each dual phase 

sample was used, followed by running the broken down pellets through sieves to achieve the 

desired particle size distribution. This process was repeated until approximately 5 g of desired 

particle size powder was obtained. Then the powders were run through five rinses with DI water 

followed by three rinses with ethanol to remove any powder that may be too fine that possibly 

did not go through the sieves. This powder is then dried and ready for PCT testing. 

2.3 Discussion: Lattice Parameter changes and Phase composition changes vs Varying volume 

fractions of Dual phase systems 

There are alternative phases shown to form in the Nd titanate and Ga doped Ba hollandite dual 

phase systems, such as Ba-Nd-Ti-O phases. However, how does the presence of this alternative 

phase in the two phase system affect the hollandite and Nd titanate targeted phases? Using Jade 

software, an estimation of each phase was obtained and compared to SEM images. The 

BaNd2Ti5O14 phase however is not in the ICSD database yet and Jade does not have enough 

information to use this phase for an estimation, so in order to get an estimation of this phase a 

similar phase, Ba3.75Pr9.5Ti18O54, was used. Ba3.75Pr9.5Ti18O54 (ICSD# 201534) is another 

orthorhombic crystal structure with a z value of 1, where BaNd2Ti5O14 has a z value of 4, and shares 

and identical XRD spectra to BaNd2Ti5O14. There is a small difference in peak intensity between the 

two phases, but the locations of the peaks are almost identical, so this Ba3.75Pr9.5Ti18O54 spectra 

was used as a surrogate for the estimations. 

There has been work done on the differences between the two hollandites used in the dual phases 

systems, comparing the lattice parameter change as the Cs in the single phase hollandite structure 
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was increased. According to Xu et al20, As the Cs occupancy in the a site of the hollandite crystal 

structure is increased, the lattice parameter a increases. This is crucial because Yun et al shows 

how Cs occupancy changes the microstructure of the hollandite, which can change the properties 

in the multiphase samples.  

Figure 2-11. Bar graph of estimated phase composition of three samples from PCT testing. These 
dual phase samples precursors were Ba1.04Cs0.24Ga2.32Ti5.68O16 and Nd2Ti2O7 in varying volume 
fractions. These phase compositions are estimates using refinements in Jade software. The SEM 
images above the graph are images of each of the samples with varying volume fraction. 

Shown in Figure 2-11, is the estimated phase composition of the first three PCT samples with 

varying volume fractions, labeled as HP1, HP2, and HP3 in Table 2-5. The SEM images above the 

graph show the vast difference in phase formation. In the first SEM image, representing the 70% 

hollandite and 30% Nd titanate, hollandite is the majority phase in the sample with a few grains 
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of the Ba-Nd-Ti-O phase, and both Nd titanates. This is supported by the bar graph showing a 

majority of the phase is estimated to be hollandite, with some BaNd2Ti5O14 and both Nd titanates.  

In the second image, 50% hollandite and 50% Nd titanate, the SEM image shows the majority 

phase present is a Ba-Nd-Ti-O phase, which is supported by the estimations in the bar graph where 

approximately 65% alteration phases. Some hollandite remains in this sample as well in the center 

of the SEM image. 

In the third SEM image, the 30% hollandite and 70% Nd titanate sample, shows a majority of the 

phases present is Nd titanates as a mixture of Nd2Ti2O7 and Nd4Ti9O24. According to the 

estimations in the bar graph, and confirmed by EDS, the majority of the Nd titanate is present as 

Nd2Ti2O7. 

It is important to note the large amount of alternative phases formed in these three dual phase 

systems. This is important because the PCT test is no longer testing a dual phase system of 

hollandite and titanate, but rather a multiphase system that is 40 to 65% secondary phases. Even 

the samples that were primarily hollandite or Nd titanate showed a significant amount of these 

alternative phases forming, making up approximately a total of 40% of the samples. Alternative 

phases forming has been reported in similar systems. Lin et al45 had alteration phases occur in a 

Ce0.8Gd0.2O2 – δ- CoFe2O4 composite being examined for enhancing grain boundary ionic 

conductivity. 
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Figure 2-12. Bar graph of estimated phase composition of three samples from PCT testing. These 
dual phase samples precursors were Ba.667Cs.667Ga2Ti6O16 and Nd2Ti2O7 in varying volume 
fractions. These phase compositions are estimates using refinements in Jade software. The SEM 
images above the graph are images of each of the samples with varying volume fraction. 

The last three dual phase systems, whose estimated phase composition is shown in Figure 2-12, 

showed much less alternative phase formation than the Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite 

systems. These systems correspond to the Ba.667Cs.667Ga2Ti6O16 and Nd2Ti2O7 dual phase systems 

that are labeled as HP4, HP5, and HP6 in Table 2-5. The SEM images above the graph in Figure 2-

12 correspond to each of the systems with changing volume fraction. The first SEM image (right) 

shows the majority of that system is hollandite, where the second image shows a fairly even 

mixture of hollandite and Nd titanate, and the third image (left) shows the majority of the sample 

is Nd titanate. 
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These Ba.667Cs.667Ga2Ti6O16 hollandite systems appear to be more stable upon heating, with only a 

combined estimated 10-15% of Secondary phases forming in all three samples. This is due to the 

increased stability of the hollandite with the increased Cs in the structure20. However, Xu et al20  

show this increase of stability of the hollandite structure also leads to an increase in the tunnel 

size in the structure of hollandite. This increase of tunnel size allows for greater ion mobility, which 

could possibly explain why the Ba.667Cs.667Ga2Ti6O16 hollandite has a larger elemental release 

compared to the less stabile Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite. This leads to the need to 

investigate the optimal Cs loading in hollandite to balance stability and resistance to Cs release. 

These Ba.667Cs.667Ga2Ti6O16 hollandite systems will be more accurate for PCT testing on the 

targeted dual phase systems, even though there is some alternative phases forming, the majority 

of the samples remain to be the hollandite and Nd titanate precursors.  
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Figure 2-13. Plot of a axis lattice parameters of hollandite as a function of increasing volume 
fraction in dual phase samples. The grey line across the graph is a literature value for a axis 
lattice parameter for hollandite (ICSD # 68730). 

Figure 2-13 shows a plot of a axis lattice parameters for the two different hollandites in the dual 

phase systems as volume fraction of hollandite is increased. This plot also represents the b axis 

lattice parameters of the hollandites due to the tetrahedral crystal structure, where a=b. There is 

no discernable trend as volume fraction increase with either hollandite composition. However, it 

does appear that the Ba.667Cs.667Ga2Ti6O16 hollandite remained consistently closer to the accepted 

literature value for the a axis lattice parameter. This lattice parameter stability, along with the its 

ability to remain in the hollandite phase in the dual phase systems well compared to the hollandite 

with the lower targeted Cs content, seen in Figure 2-12, show that Ba.667Cs.667Ga2Ti6O16 hollandite 

is more stable than the Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite. 
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Chapter 3. Dissolution Studies of Single and Dual Phase Ceramics by Product Consistency 

Testing 

3.1 Motives and Objectives 

PCT is a method to examine the quantitative dissolution of elements over time. This is an 

important test to utilize when examining waste forms for nuclear immobilization due to the many 

radionuclides they contain. There has been a lot of previous work using PCT to examine glass 

waste forms, as well as some work examining some ceramic waste forms. However there has been 

no work examining dual phase samples and how being in contact with other phases could affect 

these individual phases. 

This work will use PCT to examine dissolution of single and dual phase samples. The samples were 

prepared at Clemson University, but the samples were prepped and the test was carried out at 

SRNL in July of 2016. The samples are listed previously in Table 2-5. Using the information from 

PCT on single and dual phase samples, a model can begin to be developed on the leachability of 

ceramic waste forms inside a repository environment. 

The procedure for PCT testing has already been outlined in chapter 1, and the sample preparation 

has been discussed in chapter 2.  

3.2 Results and Discussion 

 To recall, there were three dual phase samples fabricated using Ba1.04Cs0.24Ga2.32Ti5.68O16 

hollandite, as well as three samples using Ba.667Cs.667Ga2Ti6O16 hollandite, shown in Figure 4.1. 

These hollandites were mixed with Nd titanate, Nd2Ti2O7, in varying volume fractions, which were 

than tested for leachability using PCT.  
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Table 3-1. List of samples prepared for PCT testing with some basic information about each 
sample. 

Samples 
Phase 

type 
Chemical Formula 

Volume Fraction 

H/P 

Sample 

Name 

Ga Hollandite 1 Single Ba1.04Cs0.24Ga2.32Ti5.68O16 100/0 H1 

Ga Hollandite 2 Single Ba.667Cs.667Ga2Ti6O16 100/0 H2 

Nd Titanate Single Nd2Ti2O7 0/100 P1 

Ga Hollandite + 

Nd Titanate 
 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
70/30 HP1 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
50/50 HP2 

Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 
30/70 HP3 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
70/30 HP4 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
50/50 HP5 

Ba.667Cs.667Ga2Ti6O16+ 

Nd2Ti2O7 
30/70 HP6 

 

To obtain normalized Cs release, the following equations were used32: 

𝑁𝐶𝐶𝑠 =
𝐶𝐶𝑠

𝑓𝐶𝑠
   [1] 

𝑁𝐿𝐶𝑠 =
𝑁𝐶𝐶𝑠

𝑆𝐴/𝑉
   [2] 

where NCCs is the normalized concentration of Cs (g/L), CCs is the concentration of Cs in the 

solution from the PCT test (g/L), fCs is the mass fraction of Cs in the sample before PCT testing, 

NLCs is the normalized Cs release (g/m2), SA is the surface area of the sample (m2), and V is the 

volume of leachate used in the PCT test (L). There were assumptions made to obtain the surface 
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area used in equation 2. The first assumption was that particles were spherical, and the second 

assumption was that the average diameter of the particles was based off the sieves used which 

was +100/-200, equaling an average particle diameter of 112.5 µm 

 

Figure 3-1. Normalized Cs release in the dual phase system as volume fraction of hollandite 
increases. This data corresponds to samples labeled HP1, HP2, and HP3, fabricated using 
Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite. 

Normalized concentrations of Cs in the leachate from the PCT were calculated from data collected 

using ICP-MS and reported as volume fraction of hollandite in the systems increased, shown in 

Figure 3-1. The tests are done in triplicate so a standard deviation can be calculated. The standard 

deviation for the sample with a hollandite volume fraction of 0.3 are small (+/- 0.002 g/m2), 

making them close to the center of the data point and hard to see. The samples with hollandite 

volume fractions of 0.5 and 0.7 were only ran in duplicate thus not allowing a standard deviation 
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calculation. However, all the other dual phase systems standard deviation were relatively small, 

so it is assumed that these values are acceptable.  

It appears that the 50/50 volume fraction of Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite and Nd titanate 

had the best resistance to Cs loss, which was the sample that has the most alternative phases 

form. This could possibly be due to a shielding effect of the secondary phases that do not contain 

Cs surrounding the hollandite and preventing aqueous leaching. The Cs in this 50/50 hollandite 

Nd titanate system appears to remain in the hollandite, however, as the hollandite structure is 

degraded from secondary phases formed, a Ga titanate forms, which also contains Cs. This phase 

is not present in the XRD spectra but could be lost due to sharing peaks with other phases in the 

sample. The pure hollandite phase showed the worse resistance to Cs loss when compared with 

the dual phase samples, but this could be attributed to having no shielding due to secondary 

phase formation that is found in the dual phase samples. 
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Figure 3-2. Normalized Cs release in the dual phase system as volume fraction of hollandite 
increases compared to the ratio of Cs to Ti in the hollandites. This data corresponds to samples 
labeled HP4, HP5, and HP6, fabricated using Ba.667Cs.667Ga2Ti6O16 hollandite. 

Shown in Figure 3-2 is the normalized concentrations of Cs found in leachate as the volume 

fraction of Ba.667Cs.667Ga2Ti6O16 hollandite is increased. The standard deviation for the hollandite 

volume fraction of 0.5 is very small (+/- 0.075 g/m2), as well as for the pure hollandite sample (+/- 

0.006 g/m2) so they are not visible in the figure. The Cs/Ti ratios shown were calculated using 

averages of atomic percentages in the hollandites of the samples which were found using EDS.  

There is a clear trend that shows the normalized Cs release decreases as the volume fraction of 

hollandite is increased. The normalized release of Cs also decreases with increasing Cs in the 

hollandite structure, meaning that the hollandite is more stable with more Cs in the structure,  

which is supported with work done by Yun et al20. However, if you compare the 

Ba.667Cs.667Ga2Ti6O16 hollandite systems in Figure 3-2, to the Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite 
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systems in Figure 3-1, the normalized release of the Ba.667Cs.667Ga2Ti6O16 hollandite systems is 

higher. This could be due to the larger amount of alternative phases formed in 

Ba1.04Cs0.24Ga2.32Ti5.68O16 hollandite systems acting as a shield to aqueous dissolution of the 

hollandite. 

The PCT-B results for Cs loss in the dual phase systems are listed in Table 3-2 as both normalized 

concentration of Cs (NCCs) as well as normalized Cs release (NLCs) to easily make comparisons to 

literature. Some available single, dual, and glass literature values are shown in Table 3-3. 

Compared to the single phase hollandite, the glass, and the multiphase literature values are all 

comparable to the Ga doped Ba hollandite and Nd titanate dual phase systems. 

Table 3-2. PCT-B results for Cs loss in dual phase systems 

Sample 
Volume Fraction 

of hollandite 
NCcs 
(g/L) 

NLcs 
(g/m2) 

HP1 0.7 7.81E-01 4.42E-01 

HP2 0.5 1.81E-01 1.02E-01 

HP3 0.3 2.25E-01 1.51E-01 

HP4 0.7 1.31E+01 8.47E+00 

HP5 0.5 1.72E+01 1.14E+01 

HP6 0.3 2.56E+01 1.99E+01 
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Table 3-3. PCT-B Results for Cs loss in powdered samples all performed in Deionized Water. 
Concentrations labeled with *1 next to them are Normalized Mass loss (g/m2) 

Compound Structure 
Temperature 

( °C) 
Time 
(d) 

Normalized 
Concentration 

(g/L) 
Reference 

Single 
Phase 

Hollandite 

Al-18 Hollandite 90 7 6.20E-01 

41 
Al-12 Hollandite 90 7 5.20E-01 

Mg-18 Hollandite 90 7 1.30E+00 

Mg-12 Hollandite 90 7 2.80E+00 

Glass 
Ceramic 

Composite 

5.86% MoO3 90 3 1.40E-01 

40 

6.25% MoO3 90 3 1.50E-01 

6.94% MoO3 90 3 2.70E-01 

5.86% MoO3 90 28 1.90E-01 

6.25% MoO3 90 28 1.30E-01 

6.94% MoO3 90 28 1.80E-01 

Multiphase 
Ceramic 

CSLNTM-02 90 7 2.88E+00 *1 
35 CSLNTM-06 90 7 3.34E+00 *1 

CSLNTM-11 90 7 9.62E+00 *1 

Multiphase 
Ceramic 

CS/LN-03 90 7 4.41E+01 

36 

CS/LN-04 90 7 3.24E+01 

CS/LN-05 90 7 4.48E+01 

CS/LN/TM Mo-02 90 7 3.80E+01 

CS/LN/TM Mo-03 90 7 2.81E+01 

CS/LN/TM Mo-04 90 7 2.37E+01 

CS/LN/TM Mo-05 90 7 2.51E+01 

 

After examining the results from the PCT, it is clear from the results of the dual phase system of 

Ba.667Cs.667Ga2Ti6O16 hollandite and Nd titanate that as the volume fraction of hollandite increases 

in a system, the less dissolution that occurs, meaning the hollandite structure is more stable. The 

hollandite structure is also stabilized by having more Cs in the structure. The results from the 

Ba1.04Cs0.24Ga2.32Ti5.68O16 and Nd titanate dual phase systems does not show the same trend, 

however this is possibly due to a shielding effect that the secondary phases is having on the 

hollandite.   
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Chapter 4. Accelerated Aging of Ceramic Waste forms by Vapor Hydration Testing 

 4.1 Motives and Objectives 

VHT is useful for examining the alteration phases of waste forms by using a vapor environment to 

speed up the aging process that occurs in a repository environment. This is important because 

with a multiphase ceramic system containing very mobile elements, such as Cs, it is important to 

know all the possible phases that could form and whether they are harmful to the environment. 

There has been very little previous work with VHT on ceramic waste forms, especially multiphase 

ceramic waste forms. 

This work will use VHT to examine the alteration and aging of single, dual, and multiphase ceramic 

waste forms, shown in Table 4-1. The samples were all marked using a diamond encrusted blade 

so the same locations could be examined before and after VHT using XRD, SEM, and EDS. Using 

these analytical techniques, not only can the phases in the samples be determined before VHT, 

but a probable idea of what alternative phases, if any, form. This insight into what alternative 

phases may form is important when planning the long term storage of waste forms in a repository 

with less than ideal conditions.  
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Table 4-1.  List of samples for VHT 

Samples 
Phase 
type 

Chemical Formula Sample Prep Observations of Samples 

Fe 
Hollandite 

Single  

 
Melted in Al2O3 

crucible received 
from SRNL 

Two different hollandites 
observed, one higher in Al 

Ga 
Hollandite 

Ba1.04Cs0.24Ga2.32Ti5.68O16 
Melted in Al2O3 

crucible 
Some secondary Cs titanate and 

Ga titanate 

Ga 
Hollandite 

Ba1.04Cs0.24Ga2.32Ti5.68O16 
Conventionally 

sintered pellet made 
through oxide route 

 

Ga 
Hollandite 

Ba1.04Cs0.24Ga2.32Ti5.68O16 
Sintered by SPS, 

made by oxide route 
 

Ga 
Hollandite 

+ Nd 
Pyrochlore 

Dual 
Ba1.04Cs0.24Ga2.32Ti5.68O16+ 

Nd2Ti2O7 (50/50 mix by Volume 
Fraction) 

Sintered pellet made 
through oxide route 

Alternate phases have been 
observed in these samples 

CAF 
Hollandite 

Multiphas
e 

 
Melted and poured 

into S.S. Crucible 
received from SRNL 

Pyrochlore, Hollandite, 
Zirconolite, Al2O3, and Rutile 

Fe 
Analogue 
Hollandite 

 

 

4.2 Single Phase Ceramic Waste Forms 

Single phase VHT focused on the single phase hollandites due to Cs being the one of the most 

mobile and problematic elements trying to be incorporated into the structures of the ceramic 

waste forms. Cs is also what many researchers have used to measure leaching in ceramic waste 

forms, whether single or multiphase46,33,47,48,5,6,36,35. 
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Figure 4-1. Single phase Fe hollandite melted in an Al2O3 crucible, received from SRNL. (A) 
Sample before VHT where phases are labeled in Table 2 (B) Sample after VHT where phases are 
labeled in Table 4-2. 

Table 4-2. Crystalline phases for SEM images of single phase Fe hollandite in Figure 4-1. 
(*Crystalline phases determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases* 

1 O, Ti, Fe, Ba, Al, Cs Hollandite 

2 O, Ti, Fe, Al, Ba, Cs Hollandite 

     

B 

Location Elements Crystalline Phases (possible) 

1 O, Cs, Al, Ti Cs-Ti-Al-O 

2 O, Cs, Al, Ti, Si Cs-Ti-Al-O 

 

Figure 4-1 shows a single phase Fe hollandite melted in an Al2O3 crucible that was received from 

SRNL, before and after VHT. The hollandite crystal structure was confirmed using XRD and EDX 

elemental analysis. There were two hollandites observed in the sample, seen in Figure 4-1, one 

being slightly higher in aluminum, which was determined by EDX elemental analysis. 

After VHT, two new phases were found on the surface of the single phase Fe hollandite sample, 

both phases being a Cs-Ti-Al-O phase. However, the two Cs-Ti-Al-O phases appears to have to 

different structures, seen in Figure 4-1, where one is spherical, containing small amounts of Si, 

and one that has an irregular structure, neither of which are confirmed to be crystalline. These 

Cs-Ti-Al-O phases were speculated only using EDX elemental analysis. 

The three single phase Ga doped hollandites that were processed by conventional sintering, 

melting, and SPS, and the results of their VHT will be discussed in Chapter 5. 
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4.3 Dual Phase Nd Titanate and Ba1.04Cs0.24Ga2.32Ti5.68O16 

VHT was conducted on the dual phase sample of Nd2Ti2O7 and Ba1.04Cs0.24Ga2.32Ti5.68O16 for 30 days. 

This dual phase system corresponds to PCT sample label HP2, which is a 50/50 volume fraction of 

Nd titanate and Ga doped Ba hollandite, made by using the crystalline Nd titanate and hollandite 

as precursors. SEM images of pre VHT and post VHT is shown in Figure 4-2, with phase matches 

in Table 4-3, where there is no change that occurred from VHT. Note that the EDS mapping for Ba 

is not shown because the Ti and Ba energies overlap, so the Ti EDS map is identical to the Ba. 

There are a few reasons that could explain why there was no change due to VHT. The most likely 

reason no change occurred during VHT is due to not having a good seal on the reaction vessel. 

Once this test was complete, it was noted that the amount of water in the container was almost 

completely absent.  This could have possibly been caused by a bad gasket on the VHT vessel. 
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A. 
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B. 

 

Figure 4-2. Nd titanate and Ga doped Ba hollandite dual phase mixed in 50/50 volume fraction 
(A) before VHT (B) After VHT. 
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Table 4-3. Crystalline Phases for SEM images in Figure 4-2(A) and 4-2(B) (*Crystalline phases 
determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases 

1 O, Ti, Ba, Ga, Cs Hollandite* 

2 O, Ti, Nd, Ba BaNd2Ti5O14* 

3 O, Ti, Nd Nd titanates* 

4 O, Ti, Ga, Cs  

 

4.4 Multiphase Ceramic Waste Forms 

4.4.1 Cr, Al, Fe doped Hollandite Multiphase 

 The Cr, Al, Fe (CAF) doped hollandite multiphase samples were melted and poured into a stainless 

steel crucible at SRNL. VHT results for the CAF hollandite multiphase are shown in Figure 4-3 and 

4-4, with phases shown in Tables 4-4 and 4-5, respectively.  The phases of the multiphase ceramic 

waste forms were confirmed by XRD analysis EDX elemental analysis, with the aid of previous 

work done on this particular multiphase waste form39. However, the alternative phases shown 

after VHT are possible phases only determined by SEM/EDS. Note that the EDS mapping for Ba is 

not shown because the Ti and Ba energies overlap, so the Ti EDS map is identical to the Ba. 
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A. 

 



54 
 

B. 
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Figure 4-3. Cr, Al, Fe (CAF) doped hollandite multiphase sample taken from the side of a bulk 
sample very close to the stainless steel crucible. (A) Sample before VHT where phases are 
labeled in Table 4-4 (B) Sample after VHT where phases are labeled in Table 4-4. 

Table 4-4. Crystalline Phases for SEM images in Figure 4-3(A) and 4-3(B) (*Crystalline phases 
determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases* 

1 O, Ti, Ba, Cr, Al, Fe, Cs Hollandite 

2 O, Ti, Nd, Ce Pyrochlore 

3 O, Ti, Zr, Ca Zirconolite 

4 O, Al Al2O3 

     

B 

Location Elements Crystalline Phases (possible) 

1 O, Cs, Al, Ti Cs-Ti-Al-O 

2 O, Ti, Cs, Mo Cs2MoO4 

3 O, Cs, Cr, Cs2CrO4 
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A. 
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B. 
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Figure 4-4. Cr, Al, Fe (CAF) doped hollandite multiphase sample taken from the top of the bulk 
sample (A) Sample before VHT where phases are labeled in Table 4-5 (B) Sample after VHT 
where phases are labeled in Table 4-5. 

 

Table 4-5. Crystalline Phases for SEM images in Figure 4-4(A) and 4-4(B). (*Crystalline phases 
determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases* 

1 O, Ti, Ba, Cr, Al, Fe, Cs Hollandite 

2 O, Ti, Nd, Ce Pyrochlore 

3 O, Ti, Zr, Nd,Ca Zirconolite 

4 O, Al Al2O3 

        

B 

Location Elements Crystalline Phases (possible) 

1 O, Cs, Al, Ti Cs-Ti-Al-O 

2 O, Ti, Cs, Mo  Cs2MoO4 

 

Both of these multiphase samples contained the same four phase before VHT: hollandite, 

pyrochlore, zirconolite, and alumina. After VHT, the formation of some new phases are shown, 

one being the Cs-Ti-Al-O phase previously seen forming on the surface of the single phase 

hollandite samples which occurs on both of the CAF hollandite multiphase samples. On the first 

CAF hollandite multiphase, Figure 4-3 and Table 4-4, some other water soluble phases where 

observed such as a possible Cs molybdate and Cs chromate. The second CAF hollandite multiphase 

also shows possible formation of Cs molybdate on its surface. This shows that the location these 

samples were taken from in a large bulk sample had an impact on the phase formation from VHT 

as well as the amount of phases formed when comparing the two samples. 

4.4.2 Fe-Analogue Hollandite Multiphase  

Fe-analogue hollandite multiphase was melted and poured into a stainless steel crucible by SRNL, 

from which the samples were received. SEM images, along with EDX elemental analysis from 
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before and after VHT are shown in Figure 4-4, and Table 4-5. Using SEM, EDX, and XRD the phases 

found present in the Fe analogue multiphase are hollandite, pyrochlore, zirconolite, alumina, and 

in this particular sample a small amount of a possible Cs-Ti-Al-O phase. After VHT, however, this 

small amount of Cs-Ti-Al-O phase was washed away, and instead the same small spherical 

particles of a Cs-Ti-Al-O phase that has been seen previously in single and multiphase samples. 

There is also an unknown phase that has appeared on the surface of the Fe-analogue hollandite 

multiphase after VHT that contains high levels of Ca, and small amounts of Ti, and Fe. Note that 

the EDS mapping for Ba is not shown because the Ti and Ba energies overlap, so the Ti EDS map 

is identical to the Ba. 
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A. 
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B. 
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Figure 4-5. Fe Analogue Hollandite Multiphase (A) Sample before VHT where phases are labeled 
in Table 4-6 (B) Sample after VHT where phases are labeled in Table 4-6. 

 

Table 4-6. Crystalline Phases for SEM images in Figure 4-5(A) and 4-5(B). (*Crystalline phases 
determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases 

1 O, Ti, Fe, Al, Ba, Cs Hollandite* 

2 O, Ti, Nd, Ca Pyrochlore* 

3 O, Al, small amounts Fe Al2O3* 

4 O, Ti, Zr, Ca, Zirconolite* 

5 
O, Ti, Al, Cs, small 
amounts Fe and Si 

Cs-Ti-Al-O 

        

B 

Location Elements Crystalline Phases (possible) 

1 O, Cs, Al, Ti Cs-Ti-Al-O 

2 
O, Ca, Zr, small 
amounts Al, Ti 

  

 

4.5 Environmental Corrosion Studies on Single and Multi-Phase Ceramic Waste Forms 

There are multiple tests that are useful for advancing the aging or dissolution of crystalline 

ceramic waste forms, but how would they compare to really being in contact with soil or metal in 

a real repository? Four samples were placed into a lysimeter, and placed into the ground at AMRL 

by Brian Powell in April of 2016 where they will remain for approximately 6 months. The purpose 

of this experiment is to examine surface alteration in real conditions with soil, rain water, 

temperature variation, etc.  

All four samples were placed in the same lysimeter to ensure similar conditions. The different 

samples are found in Table 4-7. Each monolithic sample was characterized using SEM, EDS, and 

XRD in certain marked locations on each side of the sample. One side of each sample was against 

soil, while the other side was in contact with 302 stainless steel sheets.  
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Once the samples were removed from the lysimeter, they were rinsed very lightly with a small 

amount of water to remove the very large amounts of soil on the samples to perform any SEM or 

EDS. No mechanical scrubbing or strong flowing water was used in hope of not removing any 

possible deposited phases. 

Table 4-7. Lysimeter samples along with information about where the samples are from, how 
they were made, and the phases that were observed in the samples.  

Sample  Sample Information Process Phases 

L1 
"CAF-MP-

Top" 

Cr, Al, Fe hollandite 
multiphase sample 
received from SRNL 

melted and poured into 
stainless steel crucible - 
sample from top of bulk 

sample 

hollandite, 
pyrochlores/perovskites, 

zirconolite, rutile, and 
Al2O3. 

L2 
"Fe-

Analogue 
Multiphase" 

Fe analogue 
hollandite 

multiphase sample 
received from SRNL 

melted and poured into 
stainless steel crucible - 
sample from top of bulk 

sample 

hollandite, 
pyrochlores/perovskites, 

zirconolite, rutile, and 
possibly FeAl2O4 

L3 "E-Bottom" 

Fe analogue 
hollandite 

multiphase sample 
received from SRNL 

bottom of the container 
of a multiphase bulk 

sample that was a 1kg 
demo run made by Cold 

crucible induction 

hollandite, 
pyrochlores/perovskites, 

zirconolite, rutile, 
possibly FeAl2O4, and 

areas rich in Cs 

L4 
"Fe-SP-
Pour" 

Fe hollandite single 
phase received from 

SRNL 

melted and poured into 
alumina crucible 

two different hollandites, 
one being higher in Fe, as 
well as rutile, and Cs rich 

areas 
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A.  
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Figure 4-6. Cr, Al, Fe doped hollandite multiphase that was in contact with the soil inside of 

the lysimeter (A) Sample before VHT where phases are labeled in Table 4-8 (B) Sample after 

VHT where phases are labeled in Table 4-8. 

 

Table 4-8 Crystalline Phases for SEM images in Figure 4-6(A) and 4-6(B). (*Crystalline phases 

determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases 

1 O, Ti, Fe, Al, Ba, Cs Hollandite* 

2 O, Ti, Nd, Ca Pyrochlore/Zirconolite* 

3 O, Al, small amounts Fe Al2O3* 

        

B 
Location Elements Phases 

1 O, Si Soil from lysimeter 
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A. 
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B. 
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Figure 4-7 Cr, Al, Fe doped hollandite multiphase that was in contact with stainless steel inside 

of the lysimeter (A) Sample before VHT where phases are labeled in Table 4-8 (B) Sample after 

VHT where phases are labeled in Table 4-8. 

 

Table 4-9 Crystalline Phases for SEM images in Figure 4-7(A) and 4-7(B). (*Crystalline phases 

determined by XRD results and EDX elemental analysis) 

A 

Location Elements Crystalline Phases 

1 O, Ti, Fe, Al, Ba, Cs Hollandite* 

2 O, Ti, Nd, Ca Pyrochlore* 

3 O, Ti, Zr, Ca, Zirconolite* 

4 O, Al, Al2O3* 

5 
O, Ti, Al, Cs, small 
amounts Fe and Si 

 

        

B 
Location Elements Crystalline Phases (possible) 

1 Si Soil from lysimeter 

 

Seen in Figures 4-6 and 4-7 is SEM images for the two sides of a monolith sample of Cr, Al, Fe 

doped hollandite multiphase that was one of the four monoliths put into the lysimeter for six 

months for an environmental corrosion test. Tables 4-8 and 4-9 show the phases found before 

and after the 6 month corrosion test corresponding to Figures 4-6 and 4-7. Note that the EDS 

mapping for Ba is not shown because the Ti and Ba energies overlap, so the Ti EDS map is identical 

to the Ba. 

To begin, examining the SEM images in Figures 4-6 and 4-7, it appears that the same phases found 

in the Cr, Al, and Fe doped hollandite multiphase remain consistent with previous samples used 

for VHT. The same phase assemblage of hollandite, pyrochlore, zirconolite, and Al2O3 is observed 

on both sides of the monolith. However, in Figure 4-7 there appears to be a small amount of Cs-

Al-Ti-O phase before the samples were placed in the lysimeter for the 6 month environmental 

corrosion test.  
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In Figures 4-7 and 4-8, examining the SEM images after the 6 month environmental corrosion the 

samples seem relatively unchanged. In both samples there is some residual sand leftover from 

being inside the lysimeter which is listed in Tables 4-8 and 4-9. The only noticeable difference is 

seen in Figure 4-8 was where the Cs-Ti-Al-O phase was located prior to the 6 month test, is now 

replaced with sand. This phase is known to be easily leachable, even seen in prior VHT. However 

unlike the VHT, this Cs rich phase was not leached and deposited on the surface of the sample. 

Very similar results were seen on the other samples placed into the lysimeter, so they have been 

omitted. The lack of alteration of the samples, such as what has been seen in VHT, is due to the 

shot test time of only 6 months. If the test was allowed to continue for years, there is a higher 

chance of seeing some possible deposited phases or grain boundary leaching. It is important to 

note that these samples are also not being introduced to extreme conditions as the VHT samples 

were, such as high temperatures. 

4.6 Conclusions: comparing Vapor Hydrations Tests 

Similar phases and results were seen in the single and multiphase samples. The most notable 

phase was a Cs-Ti-Al-O phase which appeared in every system, except the dual phase samples. 

Once again, it should be noted that the dual phase sample showed no clear alteration phases, but 

this is most likely due to a bad gasket resulting in water loss during the test, leaving the 

environment with much lower humidity. However, the single phase Fe hollandite showed 

significant amounts of a Cs-Ti-Al-O phase on its surface. The multiphase samples, the Cr, Al, Fe, 

hollandite multiphase and the Fe analogue hollandite multiphase, also showed a Cs-Ti-Al-O phase 

as one of the main alteration phases deposited on the surface after VHT. The multiphase samples 
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did show other phases depositing as well, such as a possible Cs molybdate and Cs chromate, which 

are important to note as well. 

With the deposited phases being so similar in samples after VHT, it does appear that Cs retention 

in the waste forms are similar, regardless of whether they appear in single or multiphase systems. 

Future work should focus on more VHT on dual phase sample, being a large gap in current work. 

With Cs retention appearing to be similar in single and multiphase systems, it would also be 

important to perform VHT on single, dual, and multiphase systems with varying Cs loading in the 

hollandite. 
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Chapter 5. The Effect of Grain Size on Alternative Phase formation of Hollandite 

5.1 Motives and Objectives 

The motivation of this experiment comes from a multiphase VHT. Seen in Figure 5-1, is a 

multiphase sample made with Cr, Al, Fe doped hollandite before and after a 30 day VHT. Figure 

5-1a shows the multiphase before VHT, Figure 5-1b shows the multiphase after VHT, and Figure 

5-1c shows the multiphase after VHT after being rinsed with a small amount of deionized water. 

There are many alternative phases formed during VHT, however they are either water soluble or 

loose on the surface and washed away with ease. Notice, the large grains seen before VHT and 

after being rinsed with deionized water are largely unaltered. This leads to the idea that the 

leaching that is occurring for these alternative phases to form is coming from the grain 

boundaries. If this is true, then the larger the grains, the less grain boundaries, and the less 

leaching and alternative phase formation will occur. 

 

Figure 5-1. Cr, Al, and Fe, doped hollandite multiphase: a) before 30 day VHT, b) after 30 day 
VHT, c) after 30 day VHT after rinsed with a small amount of D.I. water 

To examine this possible effect of grain size on the durability of ceramic waste forms, samples of 

Ba1.04Cs.24Ga2.32Ti5.68O16 made with different grain sizes will be tested using VHT to see the extent 

of alternative phase formation. Seen in Figure 5-2 is a cartoon depicting how the grain size affects 
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the leaching and alternative phase formation. These differences in grain sizes were made by 

sintering the hollandite in three different ways: by melting, conventional sintering, and spark 

plasma sintering (SPS). These samples were then taken and VHT was performed on them for 14 

days.  

 

Figure 5-2. Depiction of how grain size could affect leaching and alternative phase formation. 

5.2 Sintering Techniques 

To test the different sintering techniques, the same batch of hollandite was used for to make the 

samples regardless of densifying method. This hollandite was prepared by heating at 1200 °C for 

20 hours, then crushed, milled, and made into pellets for another heating of 1250 °C for 4 hours. 

This powder was confirmed by XRD to be tetrahedral hollandite. It should be noted that the scale 

bars are different for SEM images of grains of the three different sintering methods, making it 

easier to see the size of the grains. 
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Melt Processing 

The first densification method is to melt process the hollandite. This was achieved by taking 

approximately 30 g of the hollandite powder and placing them into a large crucible. This crucible 

was then placed inside of another crucible as a secondary containment for the hollandite if it 

leaches through the first crucible. This second crucible was sealed and put in the furnace and 

ramped to 1525 °C for a 30 minute hold time. Once cooled the crucible was broken with a hammer 

to obtain pieces of the melted sample, which were then polished into small monoliths.  

SEM images and EDS elemental mapping is shown in Figure 5-3. While the large grains were 

achieved and the majority of the sample is hollandite, there are three distinct phases present, 

listed in Table 5-1. The sample does appear to have a small amount of aluminum in all of the 

phases present, which could have come from the alumina crucible the sample was melted in. The 

melt processed hollandite was the only sample found containing Al. It should be noted that the 

Ba and Ti energies overlap making the EDS maps identical, so Ba is not shown. 
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Figure 5-3. SEM image with EDS elemental maps of the melt processed hollandite. 
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Table 5-1.Phases present in the melt processed hollandite in Figure 5-3. (*Crystalline phases 
determined by XRD results and EDX elemental analysis) 

Location Elements Crystalline Phases 

1 
O, Ti, Ga, Ba, Cs, small 
amounts of Al hollandite* 

2 
O, Ti, Ga, small 
amounts of Cs and Al Ga titanate 

3 O, Ti, Cs Cs titanate 

 

Conventional Sintering 

To densify the hollandite by conventional sintering methods, the hollandite was first pressed into 

pellets and then heated in the furnace. Temperature was slowly brought up to 1250 °C and held 

for four hours.  

The SEM and EDS elemental maps of the conventional sintered sample, seen in Figure 5-4, show 

that the majority of the sample is hollandite, however there are a few grains with much higher in 

gallium and slightly higher in Cs. This is similar to the same Ga titanate that was seen in the melted 

hollandite. The conventional sintered hollandite also appears to still be slightly porous, which 

could lead to increased leaching due to increased surface area.  
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Figure 5-4. SEM image with EDS elemental maps of hollandite densified by conventional 
sintering. 
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Spark Plasma Sintering 

Spark plasma sintering (SPS) is a method of sintering using an electric current. The hollandite 

powder was put into a graphite die, which has a higher conductivity than the powder, and pulses 

of electricity starting with 100 amps and increasing to 500 amps over time. This current goes 

through the powder, leading to heating. This SPS sample achieved a sintering temperature of 

approximately 1250 °C and held at this temperature is held there for about 5 minutes, achieving 

a densified hollandite. 

Figure 5-5 shows an SEM image of the grain size of the SPS hollandite used. However the SEM 

used to take this image was not able to take EDS measurements. Figure 5-6 shows the sample at 

a lower magnification, where the grain size is not visible but EDS for the sample is available. There 

are 3 phases present in the SPS samples, which are listed in Table 5-2. The major phase is the 

targeted hollandite, the second phase appears to be a Ga titanate that was seen in all samples, 

and the third phase appears to be Ga oxide, one of the precursors used to form hollandite. 
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Figure 5-5. Low voltage SEM image of SPS hollandite, showing submicron gains achieved by SPS 
sintering. 
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Figure 5-6. SEM image with EDS elemental maps of hollandite densified by spark plasma 
sintering (SPS). 
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Table 5-2.Phases present in the SPS hollandite in Figure 5-6. (*Crystalline phases determined by 
XRD results and EDX elemental analysis) 

Location Elements Crystalline Phases 

1 O, Ti, Ga, Ba, Cs,  hollandite* 

2 
O, Ti, Ga, trace 
amounts Ba, Cs Ga titanate 

3 O, Ga Ga oxide 

 

5.3 Results and Discussion 

After the 14 day VHT the samples were removed and SEM and EDS were used to examine the 

surface of each sample. The SEM images for the melt processed hollandite, the conventional 

sintered hollandite, and the SPS hollandite are shown in images 5-7, 5-8, and 5-9 respectively. It 

should be noted that images 5-7 and 5-8 correspond the same locations on the samples previously 

shown in Figures 5-3 and 5-4. However, the SPS hollandite shown in Figure 5-6 before VHT does 

not correspond to the same location in Figure 5-9. The location before VHT on the SPS hollandite 

in Figure 5-6 appeared to be mechanical damaged after VHT, most likely due to fastening the Pt 

wire around the sample before VHT. Therefore, Figure 5-9 is on another location on the sample 

after VHT. 
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Figure 5-7. SEM image with EDS elemental maps of the melt processed hollandite post VHT. 
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Figure 5-8. SEM image with EDS elemental maps of hollandite densified by conventional 
sintering post VHT. 
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Figure 5-9. SEM image with EDS elemental maps of hollandite densified by spark plasma 
sintering (SPS) post VHT. 
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The melt processed hollandite showed some significant alteration on the surface, indicated by the 

arrows in Figure 5-7. However, it seems this phase is nearly identical to the phase numbered 3 in 

Figure 5-3. Since this phase was seen on the surface before VHT, it is very likely this phase 

dissociated and reformed on the surface of the melt processed hollandite. Which doesn’t 

necessarily indicate the leaching for this phase occurred from the grain boundaries but rather 

directly from the phase on the surface that is no longer seen. 

The conventional sintered sample showed absolutely no alteration from the VHT. Comparing 

images in Figure 5-4 to images in Figure 5-8 show no change 

The SPS hollandite sample however showed the most alteration on the surface, seen in Figure 5-

9. After VHT a Cs-Ti-O phase was deposited on the surface that has not yet been determined. The 

grains in the sample also appear to be relatively unchanged, unlike in the melt processed 

hollandite. 

After reviewing the results of the VHT for the three different densifying methods for hollandite, it 

does appear the SPS hollandite sample, having the smallest grain size, did show the most leaching 

and alternative phase formation. The conventional sintered sample, with the medium grain size, 

showed no change. The melted hollandite did show a Cs phase on the surface, it more than likely 

came from the Cs titanate phase on the surface before VHT, instead of actually leaching from the 

grain boundaries. Therefore, as grain size decreases, the amount of leaching during VHT increases, 

however large amounts of secondary phases in the sample can significantly affect the leachability 

of hollandite as well.  



86 
 

Chapter 6. Conclusions and Future Work 

6.1 Dual Phase Studies 

In the dual phase systems there were some possible new phases that were witnessed. In the Nd 

titanate and hollandite dual phase systems there was the phase BaNd2Ti5O14 that was identified 

using SEM, EDS, and XRD. Very little literature is available on this phase and none that show it 

appearing as a secondary phase in multiphase waste forms. Accompanying this BaNd2Ti5O14 phase 

was a Nd4Ti9O24 and a possible Ga titanate, the later only being seen in SEM and EDS. These two 

phase explain what happens as the Hollandite structure is degraded, causing Nd2Ti2O7 to transition 

to Nd4Ti9O24, and Cs and Ga are forming another titanate. It was also determined that depending 

on the composition of the Ga hollandite, heavily effected the amount of phase alteration upon 

heating systems of crystallized Nd titanate and Ga doped Ba hollandite. The larger amount of Cs 

substituted into the A site of the hollandite structure led to less secondary phases forming when 

in the dual phase systems, meaning the hollandite structure is more stable with the more Cs 

substitution.  

In the La titanate and hollandite systems, similar phases seen in the Nd titanate systems were 

observed in the raw powder precursor. However, not seen in the Nd titanate samples was the La 

titanates in the dual phase system actually reducing into a perovskite structure, which is one of 

the actual targeted phases in the multiphase titanate waste forms. This shows how favorable this 

perovskite is to form. 

The Ce brannerite and hollandite systems showed absolutely no reaction, which was expected 

from the single phase studies. Ce brannerite was favorable to form at only a very specific 

temperature range, which below did not form, and above melted. 
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There is still a large gap in dual phase model systems as this is just examined a few possible 

systems. In order to make the ideal ceramic multiphase waste form it is important to understand 

the single phases, the dual phase systems, and then the multiphase systems. Continued work on 

dual phase systems with varying Cs content in the hollandite structure and investigating dual 

phase systems with different hollandite dopants, such as Fe, Zn, Cr, etc… Varying the titanate used 

in the systems as well is paramount, not only different lanthanide titanates, but structures as well, 

Nd2Ti2O7 is the absolute simplest system, where the multiphase targets pyrochlore, which would 

require doping of the Nd titanate. Investigating these dopants to form pyrochlore would also lead 

to investigating zirconolite which is related to the pyrochlore structure.  

6.2 Vapor Hydration Testing / Environmental Corrosion Studies 

Using VHT, many different single, dual, and multiphase systems were investigated. To begin, in 

almost all systems, except the dual phase system that had an experimental error, saw Cs rich 

phases leached out and deposited onto the surface of the samples. The most commonly seen was 

a Cs-Ti-Al-O phase after VHT, in single and multiphase samples. In conclusion, it appears that 

regardless of single or multiphase systems, Cs retention in waste forms are similar. It could also 

be deduced that even different compositions of hollandites produce similar Cs phases, seen in the 

multiphase and even when comparing the single phase Fe hollandites to the single phase Ga 

hollandites.  

Future work for VHT includes more work on dual phase systems, being a large gap in the available 

literature. The idea that Cs retention is similar in single and multiphase systems should also be 

further tested by performing VHT on systems with varying Ba to Cs ratios.  
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6.3 Product Consistency Testing 

The results from PCT of the dual phase system of Ba.667Cs.667Ga2Ti6O16 hollandite and Nd titanate 

show as the volume fraction of hollandite increases, the less dissolution that occurs. This means 

that as the volume fraction of hollandite in a multiphase is decreased, the stability of the 

hollandite is increased. The results from the Ba1.04Cs0.24Ga2.32Ti5.68O16 and Nd titanate dual phase 

systems does not show the same trend, however it is difficult to make any conclusions from this 

data due to the large amounts of secondary phases that formed in these systems. 

Future work with PCT includes more testing with different dual phase systems with varying Cs 

content in the hollandite structure and dual phase systems with different hollandite dopants, such 

as Fe, Zn, Cr, etc… Varying the different dual phase systems, such as doped pyrochlores and 

zirconolites would be important as hollandite is constantly in contact with them in the multiphase 

systems. 
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