
Clemson University
TigerPrints

All Theses Theses

5-2010

Acceleration of Biomolecular Simulations using
FPGA-based Reconfigurable Computing
Ananth Nallamuthu
Clemson University, anallam@clemson.edu

Follow this and additional works at: http://tigerprints.clemson.edu/all_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact awesole@clemson.edu.

Recommended Citation
Nallamuthu, Ananth, "Acceleration of Biomolecular Simulations using FPGA-based Reconfigurable Computing" (2010). All Theses.
Paper 855.

http://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://tigerprints.clemson.edu/all_theses/855?utm_source=tigerprints.clemson.edu%2Fall_theses%2F855&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:awesole@clemson.edu


Acceleration of Biomolecular Simulations
using Reconfigurable Computing

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Ananth Nallamuthu

May 2010

Accepted by:

Dr.Melissa C. Smith, Committee Chair

Dr.Steven J. Stuart

Dr.Walter B. Ligon III



Abstract

A paradigm shift is occurring in the way compute-intensive scientific applica-

tions are developed. Thanks to advancements in commercially viable hybrid architec-

tures for High-Performance Computing (HPC), the focus has shifted from improving

performance by merely scaling algorithms on von Neumann computing nodes to fully

exploiting additional computational capabilities provided by accelerators such as FP-

GAs (Field Programmable Gate Arrays) and GPGPUs (General Purpose Graphical

Processing Units).

Computational chemists use Molecular Dynamics (MD) simulations like

LAMMPS (Large Scale Atomic Molecular Massively Parallel Systems) and NAMD

(NAnoscale Molecular Dynamics) to simulate biomolecular behaviour such as protein

folding and small molecule docking to proteins. MD simulations are computationally

complex n-body problems, which are time consuming to simulate in biologically rele-

vant scales. Executing such simulations in best available HPC environments is critical

for scientific advancements in the field. Thus, as HPC technology evolves, there is a

need to update classical biomolecular simulation applications like LAMMPS to bet-

ter suit the architecture. In this work we modify LAMMPS (a classical molecular

dynamics simulation program developed for CPU-only clusters) to execute on a re-

configurable computer system, SRC-7 H MAP. The SRC-7 H MAP consists of two

Altera FPGA logic chips interfaced to a dual-core Intel Xeon processor. Users can
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benefit by offloading most compute-intensive tasks of the application to the FPGA

logic. This work explores the challenges involved in effectively adapting a production

level application code optimized for von Neumann architecture, to an FPGA-based

hybrid architecture.

We have successfully accelerated the non-bonded force computations, the most

compute-intensive module in LAMMPS for biomolecular simulations, by 5.0x over a

single 3.0 GHz Xeon processor. This performance includes the data transfer over-

heads and function calling overheads. Further, using the accelerated non-bonded

force computations function, we achieve an overall application speed-up of 2.0x to

2.4x
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Chapter 1

Introduction

“More than 1000 mega float point operations per second (megaFlops) are ex-

pected in future supercomputers” - Kai Hwang and Faye A. Briggs in 1984 [1].

Thanks to Moore’s law and the advances in parallel computing techniques,

High Performance Computing (HPC) has leapt into the petaflops era. However,

there is a continuing need for even more computing performance in several domains.

Specifically, in the biomolecular field, a large gap exists between the desired and

achievable simulation capabilities.

Computational molecular biophysicists prefer smaller simulation systems

(20,000 to 100,000 atoms with explicit solvent) and longer time-scales. On traditional

parallel computers, this leads to a low computation/communication ratio. This ratio

leads to a performance gap for parallel Molecular Dynamics (MD) simulations since

a synchronization is required after every simulated time-step. An individual time-

step is typically 1 femtosecond (e-15 seconds). Therefore, performing a microsecond

MD simulation per day would typically require about a million time-steps per day

or about 100 microseconds to complete one simulation time-step! Therefore, the net-

work latency will highly impact the scalability of codes since the simulation must
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synchronize after each time-step. Simulating and synchronizing at this rate is cur-

rently unachievable and in turn significantly impacts the outcome of science in this

area, by limiting the scale, type, and/or number of simulations.

Fewer processing nodes with increased clock speeds, could counter the scalabil-

ity problem of MD simulations, however as the silicon technology approaches atomic

size, Moore’s law will not hold and it will be impossible to increase clock speeds any

further. The approaching end of Moore’s law has prompted manufacturers to adopt

multi-core technology and alternate computer architectures such as accelerator-based

approaches. The first HPC system to cross the petaflop barrier, Roadrunner [2], uses

an accelerator-based computing approach and more such hybrid HPC systems have

emerged.

To take advantage of hybrid architectures in the HPC, many legacy appli-

cations that were originally developed for General Purpose Processors (GPPs) are

being ported to hybrid architectures. Specifically, MD simulators that do not scale

well beyond a few thousand nodes on conventional HPC systems are being accelerated

with Graphical Processing Units (GPUs) and Field Programmable Gate arrays (FP-

GAs) to improve performance. For example AMBER [3] has been accelerated with

FPGA-based reconfigurable system - SRC-6 H MAP [4] and NAMD [5] has been ac-

celerated with GPUs [6]. In this thesis, we use an FPGA-based reconfigurable system

to accelerate LAMMPS for biomolecular simulations.

1.1 FPGAs as accelerators

The fastest way to execute any algorithm is to use custom hard-wired tech-

nology such as an Application Specific Integrated Circuit (ASIC). Since ASICs are

designed for specific computations and the parallelism in the algorithm need not be
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altered to suit the hardware, typically the fastest and most power-efficient solution is

provided with ASIC devices. The high capital costs involved in ASIC design and man-

ufacturing and the inability to re-use the hardware for other applications or changes to

the original application, make them unsuitable for HPC systems. In contrast, GPPs

provide high-flexibility in terms of programmability, however the inherent sequential

nature of processing instructions in von Neumann architectures make them inefficient

in terms of work-rate, if not the clock rate. Reconfigurable Hardware (RH) such as

FPGAs are mid way between the ASICs and GPPs in terms of programming flexibility

and performance. FPGAs are comprised of Look Up Tables (LUTs), memory, DSP

blocks and multipliers and can be programmed and re-programmed to implement any

functionality. The FPGA architecture facilitates coarse grain task-level concurrency

as well as concurrency via pipelining. In spite of the lower clock-rate, FPGAs are ca-

pable of providing high-speedups to compute-intensive algorithms when the available

spatial and temporal parallelism are exploited.

1.2 Related Work

FPGA implementations of MD computations have been studied by several

researchers. One of the initial MD implementation on FPGA studies is [7], in which,

N.Azizi et al. implement the Lennard Jones (LJ) forces computation along with

the Verlet integration on a Transmogrifier3 (TM3) [8] system. The TM3 consisted

of four interconnected Xilinx Virtex 2000E FPGAs with external SRAMs. Their

implementation uses fixed-point numbers at different scales and reports a performance

of 0.29x slower than the original software implementation on a 2.4 GHz CPU.

In [9], Scrofano et al. demonstrate that the LJ force and potential calcula-

tion kernels can be implemented on an FPGA and take advantage of the parallelism
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available from deep pipelining. Two LJ force calculation pipelines are implemented

in VHDL for the Xilinx Virtex-II Pro XC2VP7 FPGA on the Xilinx ML300 board

[10]. The implementation operates at 122 MHz and has a reported throughput of 3.9

GFLOPS for two pipelines, but the results do not include the overall performance

when the LJ kernels are integrated with a complete MD simulator, which would

reduce the overall speed-up

In [11], Yongfeng Gu et al. report an implementation of an MD simulator

on a WildstarII-Pro [12] board consisting of two Xilinx Virtex-II Pro XC2VP70-5

FPGAs. The implementation uses fixed-point arithmetic of varying precisions. The

authors show a performance gain of 31x to 88x compared to the SW implementation.

However the SW implementation is not production level and is about 10x slower than

production grade applications as pointed out by Scrofano et al in [13].

In [14], the authors accelerate Protomol [15] and report a speed-up of 5x to

10x for a 77k particle system, when compared to the execution time of GPP version

of NAMD. Protomol is an experimental MD code, while NAMD is a mature popular

parallel MD simulator. The authors use a fixed-point arithmetic approach for efficient

usage of the FPGA resources and also demonstrate, that if the simulation accuracy

could be relaxed, better speed-ups could be achieved with FPGA acceleration.

In [13], Scrofano et al. use an SRC-6 MAPstation [16] to accelerate the non-

bonded force calculations. The authors follow design and evaluation method similar to

the one presented in this thesis, however, the application used in [13] is not considered

production-level code and uses a cut-off based method for the long-range coulombic

force calculations. The authors implement a force pipeline consisting of two parts

connected by a FIFO. Updating the force arrays involves storing the updated force

values temporarily on the FPGA block RAMs until the end of an iteration of the outer

loop and then updating the OBM banks. The authors do not implement the newton
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off method implemented in this thesis, due to the limitations in earlier versions of

the SRC Carte suite [17] for performing floating-point summations on sets of varying

sizes. In Chapter 4, we discuss the design presented in [13] further and make direct

comparisons with our implementation.

The major draw back in [14] and [13] is that both papers focus on acceleration

of an MD simulator developed by the authors or experimental MD packages such

as Protomol. Though useful in demonstrating the performance gains possible with

FPGAs, these works cannot be used by application scientists unless integrated into

mature production level simulators such as NAMD and LAMMPS. Such an integra-

tion is not trivial. Our approach differs from these research projects since we focus on

accelerating a production-level application (LAMMPS), directly benefiting the appli-

cation scientists. Further, to closely represent the end-user problem, we also select a

benchmark that uses the Particle Particle Particle Mesh (PPPM) method (discussed

in chapter 2) for long range electrostatic simulations, instead of cut-off based method

as used in [13].

Authors in [18] and [4] report studies on accelerating the production-level

applications NAMD and AMBER [3] respectively, and describe the steps involved in

porting a large-scale scientific application to reconfigurable systems.

In [18], Kindratenko et al. describe the steps involved in porting NAMD to

an SRC-6 MAPstation and report a speed-up of 3x. In [4] Alam et al. use two

FPGA devices on the SRC-6 Mapstation to port the PME computations of AMBER

and show a speed-up of about 3x. LAMMPS is different from NAMD and AM-

BER in design and the computation methodology followed. For example LAMMPS

uses spatial-decomposition technique for parallel implementation while AMBER uses

atom-decomposition technique. Thus our FPGA implementation is significantly dif-

ferent from those in [18] and [4]. Further, in this research we take advantage of the
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new functionalities provided in the SRC Carte programming suite (version 3.2), which

were not available during the earlier research studies with the SRC-6 MAPstations.

We believe the only other FPGA-based acceleration of LAMMPS is [19], where

the author attempts to port the non-bonded force computations of LAMMPS to

an XtremeData XD1000 [20] machine using the Impulse-C [21] programming tools.

However the author reports errors in the XtremeData/Altera floating-point cores

libraries used. The FPGA implementation is therefore not fully functional and only

simulation-based performance is reported.

1.3 Our Approach

Our goal in this research is to accelerate a production-level MD simulator

(LAMMPS) using the FPGA-based reconfigurable system - SRC-7 H MAP [22]. We

choose a biomolecular simulation benchmark, rhodo, as a test case to closely represent

the compute profile of a real-world biomolecular simulation problem.

We follow a hardware-software (HW-SW) partitioned approach, where the

most compute-intensive tasks are offloaded to the RH while the remaining tasks (that

do not benefit by porting to the RH) are executed on the GPP. Such HW-SW par-

titioning allows the limited FPGA resources to be used for the tasks that contribute

the most to the acceleration of the overall application.

Profiling of LAMMPS for the rhodo benchmark helps identify the computa-

tional hot-spots, then we estimate the data transfer overheads. This information is

then used to estimate the computational time on the FPGA and finally arrive at

the theoretical performance. We use the Carte-C SDK, which includes a C-to-circuit

translator, to develop the kernel that executes on the FPGA. We modify LAMMPS

host code to invoke the RH to perform the compute-intensive calculations.
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The remaining chapters are organized as follows: Chapter 2 discusses the con-

cept of molecular dynamics simulations and specific characteristics of the LAMMPS

simulator. Chapter 3 provides an overview of reconfigurable computing (RC) plat-

forms in general and specifically about the SRC-7 H MAP system used in this work.

In Chapter 4 we discuss the implementation techniques and the optimizations per-

formed to obtain speed-up using RC. Chapter 5 presents the experimental results and

discussion on performance gained. Finally in Chapter 6 we present the conclusions

and proposed future work.
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Chapter 2

Background

In this chapter we review Molecular Dynamics basics and the computational

complexity of the MD simulations. Further we discuss the characteristics of LAMMPS

that make it attractive for acceleration.

2.1 Molecular Dynamics

Fundamental physics-based simulation of Biomolecular behaviour complements

experimental analysis allowing scientists to understand the biomolecular systems bet-

ter. Critical information, that is difficult to study from experiments, such as molecular

movements, molecular interactions and change in structures over short time scales, can

be obtained from simulation results. Biomolecular simulators use classical Molecular

Dynamics (MD) methods to simulate such biomolecular system behavior typically in

picosecond to nanosecond timescales.

In a typical MD simulation, atoms are allowed to interact with each other

over a certain number of discrete time-steps and the trajectory of motion of atoms

are calculated based on Newton’s second law of motion: F = ma where F is the
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force acting on an atom, m the mass and a the acceleration of the atom. During each

time-step, knowing the mass, and the force acting on the atoms, the acceleration can

be calculated. The new position and velocity are then calculated from the previous

position, velocity and acceleration.

A basic MD simulation can be summarized in the following steps:

1. Read initial states of the atoms

2. Calculate the forces acting on each atom

3. Compute the acceleration of each atom

4. Determine the new positions and velocity of the atoms after a time-step

5. Repeat steps 2 through 4 for the required number of time-steps

The forces in a MD simulation are calculated from the potential energy E of

the system, which is a combination of bonded energy due to interaction of atoms that

are chemically bonded to each other and non-bonded energy due to interaction with

all other atoms. The bonded energy contribution consists of only a few thousand

interactions and thus is less complex to compute than the non-bonded energies that

consist of millions of interactions. The potential energy of a system of N atoms is

represented as shown in equation 2.1.

EnergyPotential =
∑
bonds

Ka(r − r0)2 +
∑
angles

KΘ(θ − θ0)2 +
∑

dihedrals

Kφp [1 + dpcos(npφ)]

︸ ︷︷ ︸
bonded energy

+
N∑
i=1

N∑
j>i

εij[(
σij
r

)12 − (
σij
r

)6] +
N∑
i=1

N∑
j>i

qiqj
r︸ ︷︷ ︸

non bonded energy

(2.1)
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Figure 2.1: Types of atomic interactions that contribute to energy potential [23]

The first three terms in Equation 2.1 represent the harmonic two-body, three-

body, and four-body interactions within the molecule and together represent the

bonded energy. Computation of these bonded terms involves a single summation and

is of complexity O(N). The fourth and fifth terms in equation 2.1 represent the van

der Waals and electrostaic interactions respectively, and contribute to the non-bonded

energy of the system. Both terms involve a double summation over N atoms, making

the non-bonded energy calculation O(N2), where N is the number of atoms in the

system. Thus for large values of N , the simulation becomes computationally very

demanding. Figure 2.1 shows the different types of atomic interactions.

To reduce the computational complexity of non-bonded energy computations,

approximation techniques such as the cut-off based method is used in many MD sim-

ulations. For any atom, the non-bonded energy contributions of the neighbor atoms

at long distances are much smaller when compared to those of the nearest neighbor

10



Figure 2.2: van der Waals and electrostatic forces between atom pairs as a function
of inter-atomic distance [24]

interactions. Therefore, considering only neighbor atoms within a cut-off radius, the

number of calculations can be drastically reduced from N ∗ (N −1) to N*(Number of

atoms within the cut-off radius). The approximation error introduced by the cut-off

based method is within acceptable limits for the van der Waals interactions, but is

large for electrostatic interactions. Figure 2.2 shows the decrease in van der Waals

forces and electrostatic forces between atom pairs, with an increase in inter-atomic

distance. While van der Waals contribution quickly drops to zero long before the cut-

off distance (10 Å), the electrostatic contribution is significant at the cut-off distance

and ignoring them would result in large errors in the energy computations. To avoid

large approximation errors in electrostatic energy summations, transform based tech-

niques such as Ewald Summation, Particle Mesh Ewald (PME) and Particle-Particle

11



Particle-Mesh (PPPM) methods have been developed. The computational complexity

and scalability of the MD simulation depends greatly on the approximation technique

used.

2.2 LAMMPS

There are several MD simulators such as NAMD [5], LAMMPS [25], and AM-

BER [26] available to the community either as open source or commercial software.

The mathematical models used by these simulators and their resulting performance in

terms of speed and accuracy of the simulation may vary slightly. Based on the appli-

cation domain or the purpose of the simulation, one simulator may be preferred over

another. In this work, we use LAMMPS as the MD simulator for acceleration with Re-

configurable Computing (RC). LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator) is a parallel implementation of MD simulation distributed as an

open source code by Sandia National Laboratories. LAMMPS employs the spatial

decomposition technique to divide the physical geometry to be simulated into small

boxes, one per processor. Each processor primarily works on the atoms within its

box, referred to as owned atoms, and may use the information of atoms owned by

other processors (known as other atoms) to compute neighbor atom interactions [27].

Important features of LAMMPS that make it an attractive application for

accelerated biomolecular simulation:

1. Biomolecular simulation capabilities - LAMMPS is one of the few MD applica-

tions that can model both the CHARMM and AMBER force fields (potential

function), an important feature for biomolecular simulations.

2. Optimized parallel as well as single node implementation - Single node ac-
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celeration with reconfigurable computing could be expanded in the future to

multi-node optimizations in a cluster.

3. Direct impact to end user community - LAMMPS is an open-source code, dis-

tributed under the terms of the GNU Public License (GPL). Which impacts the

availability of the optimized software to the wide user community. In keeping

with the terms of the GPL, all of the code described in this thesis is also freely

available.

LAMMPS is capable of modelling systems with a few to billions of particles

using a variety of force fields and boundary conditions for applications in chemistry,

biology, and material science. LAMMPS provides several user configurable options

to select the approximation technique to be used for Coulombic interactions, such as

PPPM and Ewald summations, the time integrator for the simulation such as rRespa

and velocity Verlet [27]. These simulation configurations are provided in the form of

input script commands.

The LAMMPS codebase contains sample benchmarks to compare the perfor-

mance of LAMMPS on different architectures. Since we are interested in accelerat-

ing LAMMPS for biomolecular simulations, we have selected the Rhodopsin protein

benchmark rhodo, shown in Figure 2.3, as our test case. The rhodo benchmark

consists of 32000 atoms of Bovine Rhodopsin protein contained in a solvated lipid

bilayer with water as the solvent surrounding the top and bottom of the lipid layer.

the rhodo benchmark uses the velocity Verlet method for time integration and the

PPPM method to solve long-range Coulombic interactions. As mentioned earlier,

the scalability of the transform method greatly influences the scalability of the MD

simulator, hence it is important to note that PPPM scales as N
√
logN [27] .

LAMMPS uses a neighborlist technique to keep track of neighboring atoms
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Figure 2.3: Rhodopsin protein [25]

that interact with each other. The size of the neghborlist is determined by the cut-off

distance (configured in the input script file). LAMMPS uses a switching function to

smoothly ramp down the non-bonded energies to zero. The inner and outer cut-offs

used by the switching function are defined in the pair style input command and are

8 and 10 Å for the rhodo benchmark. Further, to avoid a neighborlist re-build at

every time-step, a skin distance (configurable in the input script) is added to the

outer cut-off of the switching function when calculating the neighborlist. The rhodo

benchmark uses the default skin distance of 2 Å. These settings result in an average of

375 neighbors per atom. Since an additional skin distance is used during neighbour

list generation, approximately 60% of the atoms in the neighborlist participate in
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the pair-wise force computations in any given time-step. However, the use of a skin

distance results in the neighborlist generation only once in every 8 time-steps.

The neighborlist size in rhodo is approximately 12 million, making it the most

compute-intensive benchmark. Table 2.1 shows the performance comparison of the

five benchmarks available in LAMMPS codebase. Due to the complexity involved in

the non-bonded pair interactions described earlier, it is more than 18x slower than

the LJ benchmark. Accelerating LAMMPS for the Rhodopsin benchmark will be

significant due its relevance to bimolecular field and its relatively poor performance

on CPU machines.

Problem LJ Chain EAM Chute Rhodopsin

CPU/atom/step 1.35E-6 S 6.25E-7 S 3.62E-6 S 5.91E-7 S 2.47E-5 S
Ratio to LJ 1.0 0.46 2.69 0.44 18.4

Table 2.1: Performance comparison of benchmarks available in LAMMPS codebase
[25]

In this chapter, we discussed the application and the computational complex-

ity of MD simulations. In Chapter 3 we will discuss the reconfigurable computing

platform used in our implementation to accelerate the compute-intensive non-bonded

force calculations of LAMMPS.
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Chapter 3

Reconfigurable Computers

The concept of reconfigurable computing was first proposed by Estrin et al.[28],

when they introduced the idea of re-using computational structures to perform inde-

pendent computations and using multiplexers to route connections between the com-

ponents. While the idea of re-using components is common place in modern micropro-

cessor architectures, today the term reconfigurable computing refers to hardware-level

reconfiguration with a programmable logic device such as an FPGA. In this chapter

we provide an overview of the FPGA architecture and discuss the various ways to

couple the FPGA with a microprocessor to accelerate applications. We also discuss

the SRC-7 H MAP architecture, that is used in this research.

3.1 FPGA Overview

The computational units of an FPGA device are the Logic Elements (LEs),

composed of a group of Look Up Tables(LUTs) and Flip-Flops as shown in Figure

3.1. The LUT allows any functionality (with up to N-inputs) to be implemented,

where N is the number of inputs to the LUT. Today’s devices have 6 input LUTS
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Figure 3.1: Basic logic block of an FPGA [29]

allowing them to implement complex logic functions. The flip-flop is used to hold the

intermediate outputs for pipelining, or serve as registers [29]. The logic blocks are

placed in two dimensional arrays and are connected to a routing fabric via connection

blocks. The connection blocks can be programmed to select signals that connect to

the logic blocks. Thus hundreds or thousands of LUTs can be routed together to

perform meaningful high-level tasks. The first commercially viable FPGA XC2064,

was made available by Xilinx in the year 1985. The XC2064 had 64 configurable

logic elements with two 3-input LUTs each. Such early FPGAs, could hardly be used

for any compute-intensive tasks, they were rather used for light-weight embedded

applications. The current FPGA technology has advanced to a point where even

HPC kernels can be accomodated on FPGA devices. Taking advantage of the task-

level parallelism and pipelining that FPGAs offer, HPC kernels on FPGAs can execute
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faster than their GPP versions. To compare the raw computing power of a modern

FPGAs with a microprocessor, the Xilinx Virtex-5 SX240T with 149,760 LUTs and

2 outputs per LUT (149,760 LUTs * 2 bit operators per LUT * 250 MHz * 1/64)

is capable of 1.17 trillion 64-bit op/s, while the quad-core Opteron (4 cores * 4 ops

per clk * 2500 MHz) is capable of 40 billion 64-bit op/s, which amounts to (1170/40)

29x more raw computing performance. Further, the operating frequency of FPGAs is

limited to approximately 250 MHz, which is an order of magnitude less than GPPs.

However, the FPGA is able to provide 29x more computing power when compared to

a quad-core Opteron, thereby providing more computational power per watt.

3.2 Reconfigurable Computers

A typical reconfigurable computing system consists of one or more micropro-

cessors also known as General Purpose Processors (GPPs) coupled to RH such as

an FPGA. The compute-intensive tasks or custom instructions are offloaded to the

FPGA for acceleration.

The FPGA device can be coupled to a GPP to form a reconfigurable system

in one of the following ways [29].

FPGA integrated within the processor to process custom instructions that may

change over time. Communication latency is low, however the FPGA size is lim-

ited and thus not all tasks can be ported to take advantage of the parallelism

in FPGA.

FPGA as an On-Chip embedded processor provides low-latency communication.

In this architecture both task-level and instruction-level parallelism are achiev-

able.
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FPGA as a Coprocessor where the RH is typically coupled to the GPP via a

memory interface or a peripheral interface such as PCIe. This configuration

allows the RH to compute independently over large chunks of computation and

thus is well suited for task-level acceleration of data-intensive applications.

Our goal in this research is to use FPGAs to accelerate the compute-intensive

tasks of a biomolecular simulation with the LAMMPS framework. Since we intend

to work on task-level granularity, it is advantageous to use a reconfigurable system

with the following characteristics:

1. Fixed architecture CPU closely coupled with FPGA devices: enables the ap-

plication partitioning where I/O operations and other tasks that do not ben-

efit from FPGA acceleration to execute on the CPU while the most compute-

intensive tasks are ported to the FPGA. Closely coupled systems minimize the

data transfer overheads.

2. High communication bandwidth between CPU and FPGA: decreases the com-

munication overheads and sustains the speed-up achieved by accelerating indi-

vidual tasks.

3. A high-level programming environment: provides automatic translation from

C/Fortran to VHDL/Verilog which is used to generate the FPGA bit stream.

Some of the popular high-performance reconfigurable systems available to-

day that meet these specifications include the XtremeData XD1000/2000, DRC

DS1000/2000, and SRC MAPstations.
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3.3 SRC-7 H MAP

The SRC-7 H MAP is the latest from the SRC Computers’s MAPstation series.

The SRC MAPstation consists of a MAP processor (RH) coupled to the GPP via the

memory interface (DIMM slots). The MAPstations can be scaled to a cluster using

ethernet interconnect and can share common memory across nodes using SRC’s Hi-

Bar switch as shown in Figure 3.2.

Figure 3.2: SRC MAP cluster with Hi-Bar switch and common memory [16]

In this research, we focus on accelerating LAMMPS on a single SRC-7 H

MAP node, which consists of an Intel Xeon 3.0 GHz dual-core processor coupled

with reconfigurable MAP processor. The MAP processor consists of two 150 MHz

Altera Stratix II EP2S180 FPGAs, connected to each other by a 128-bit data channel.

The block diagram of the Altera Stratix II EP2S180 FPGA is shown in Figure 3.3.

Each EP2S180 device on the MAP consists of 179,400 Logical Elements (LEs), 97

embedded DSP blocks, and about 9 Mbits of embedded memory.

Apart from the memory embedded within the FPGA, the devices have access
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Figure 3.3: Altera Stratix II FPGA block diagram [30]

to 64 MB of SRAM, distributed across 16 On Board Memory (OBM) banks. The

OBM banks are interfaced to the FPGA with 64-bit ports, thus a 64-bit independent

memory reference can be made from each of the 16 OBM banks, adding up to a

maximum memory bandwidth of 19.2 GB/s. Large data sets that cannot be accom-

modated on the FPGA Block RAMs or the OBMs can be stored in a third level of

memory known as the Global Common Memory (GCM). The SRC-7 H MAP that

we use in this research, has 1 GB of GCM. The GCM is accessible both from the

microprocessor as well as the MAP processor, thus, could be used as an intermediate

storage location for large data sets that need to be transferred between the processors.

The GPP and the MAP processor are connected via a SNAP interface that

allows the GPP and the FPGA to share the system memory as peers, thus the commu-
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nication bandwidth between the GPP and the FPGA is only limited by the memory

characteristics of the system. The SNAP interface in the SRC-7 H MAP has seperate

input and output ports and interfaces with the GPP motherboard’s memory interface

(DIMM). The SRC-7 H MAP system uses a DDR2 memory based SNAP interface,

which provides a sustained bandwidth of 7.2 GB/s.

3.3.1 SRC Carte Programming suite

The SRC carte programming suite enables users to program in a high-level

language (Fortran or C) and abstracts away the underlying architectural complexi-

ties of the system hardware. The SRC Carte suite consists of MAP-Fortran and C

compilers for the FPGA hardware, Intel Fortran and C compilers for the host proces-

sor(s), Carte MAP Macro libraries for frequently used and optimized functions, and

Quartus FPGA Place and Route to generate the bitstreams for the FPGAs. Figure

3.4 shows the steps involved in generating an unified executable for a C application.

The functions that execute on the CPU are compiled with the appropriate Intel com-

piler, while the MAP function to be executed on the FPGA is compiled with the SRC

Carte C compiler. As a part of the C to bit-stream translation process, the MAP C

compiler invokes Altera Quartus Place and Route (P&R) to convert the intermediate

EDIF files to an FPGA bit stream. The P&R process could take anywhere from

several minutes to a couple of hours to complete, depending on the complexity of

the MAP code. Upon completion of P&R, the FPGA bit stream is included in the

object file created by the MAP C compiler. Finally the object files generated by

the Intel compiler and the MAP C compiler are linked together with Intel linker to

form a unified executable [17]. The SRC Carte progamming suite also provides the

developer with debug mode and simulation mode compile options, which can avoid
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Figure 3.4: Carte unified execution compilation process [22]

the time consuming P&R process during functional verification.

This chapter presented an overview of the FPGA architecture and how it can

be coupled to GPP to achieve acceleration. We also discussed the architecture of

the SRC-7 H MAP reconfigurable system used in this research. In the next chapter

we will discuss the design and implementation of the LAMMPS application on the

SRC-7 H MAP.
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Chapter 4

Design and Implementation

Gaining application performance on reconfigurable systems involves strategic

partitioning of the application based on profile data from the GPP execution, careful

planning of data movements, and rigorously designing the FPGA code around any

hardware limitations of the system. This chapter discusses the various steps followed

in the design and implementation stages, the design options considered, and the

reasons behind the choices made in the implemented design. Further, it provides

insight into the performance results expected from the implementation.

4.1 HW-SW Partitioning

The first step in accelerating an application using a hybrid architecture is to

identify the compute-intensive functions in the application through profiling. The

Gprof tool provides flat profile data useful in identifying the most compute-intensive

tasks of an application, and call graph information indicating the calling order of the

functions being called and the parent or child functions of the given function. We

use the flat profile information to identify the functions to consider for acceleration
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by RC. The call graph is used to determine if any of the less compute-intensive tasks

should be agglomerated with their parent function or child function that is being

ported to reconfigurable hardware. Such agglomeration of functions helps to reduce

calling overheads and avoid unnecessary data movements between the reconfigurable

hardware and the GPP.

Profiling LAMMPS for the Rhodopsin benchmark (rhodo), re-

vealed that approximately 70% of the total execution time is spent in

the PairLJCharmmCoulLong::compute function, making it a natural can-

didate for acceleration. Analyzing the call graph, we understand that

PairLJCharmmCoulLong::compute is called once per time-step by Verlet::run

and is a parent of the functions Pair::ev setup, Pair::ev tally, and

Pair::virial compute. While only a trivial amount of time is spent in the

three child functions, the number of calls made to these functions varies. For

the Rhodopsin benchmark where n step=100, Pair::ev tally is called 20858799

times while Pair::virial compute and Pair::ev setup are each called 101

times (once per time-step). We in-line the child functions along with their parent

PairLJCharmmCoulLong::compute to avoid function calling overheads and data

transfer overheads.

4.2 Accelerating non-bonded force computations

The PairLJCharmmCoulLong::compute function computes the forces due to

the pair-wise non-bonded interactions - the Coulombic (or electrostatic) forces and

the Lennard-Jones (or van der Waals) forces. The compute function has two loops, an

outer loop of nlocal atoms (32000 for Rhodopsin benchmark on a single processor)

and inner loop that iterates over the neighborlist of each atom. The size of the neigh-
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borlist thus determines the cumulative number of iterations in the compute function.

The inner and outer cut-off distances used by the Switching function for pair-wise

force computations in Rhodopsin benchmark are 8 and 10 Ångstroms respectively re-

sulting in an average of 375 neighbors per atom. Thus the total number of iterations

in the PairLJCharmmCoulLong::compute function per time-step for the Rhodopsin

benchmark is approximately 12 million. During each of these iterations, the distance

between the pair of atoms is checked. If the distance is within the cut-off distance

for Lennard-Jones (LJ) interaction, the LJ force for the pair is computed. Likewise

for the pairs that satisfy the coulombic cut-off, the coulombic forces are computed.

For the pairs that do not satisfy either of the cut-off distances, the force is simply

assigned as zero, avoiding a significant number of floating-point operations on the

CPU.

As discussed in Chapter 3, FPGAs offer both spatial parallelism (concurrent

execution of independent tasks) and temporal parallelism (pipelined execution). We

pipeline the loop (henceforth referred to as the compute loop) that iterates over the

pairs of atoms to compute the non-bonded forces. In an ideal situation, without

any stalls for memory access or scalar dependencies, a fully pipelined compute loop

on the FPGA would produce one iteration per clock cycle once the pipeline was

filled, irrespective of whether the force needs to be computed for the pair or not.

Thus, on an FPGA operating at 150 MHz, computation time alone for an optimized,

maximum pipelined loop of 12 million iterations would be 12 million iterations x

6.67x10−9 (seconds per clock cycle), which equals 80 ms. This loop performance

will be deterministic irrespective of the number of pairs that fall under the cut-off

distance. On a Xeon processor the compute loop consumes 990 ms when 60% of the

atom pairs satisfy the cut-off distance (as in the case of Rhodopsin benchmark) and

this time will increase when the percentage of atoms that satisfy the cut-off distance
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increases. Thus we estimate an ideal speed-up of 990/80 = 12x for the non-bonded

force computations for a single pipeline implementation on the FPGA.

To obtain a speed-up close to the ideal speed-up, our design goals were:

1. Create a non-bonded force calculation pipeline of maximum throughput

that computes the forces between one pair of atoms per cycle,

2. Minimize the data transfer overheads and overlap the data transfers with

computation.

4.2.1 The design

4.2.1.1 Maximum throughput pipeline

The Carte C compiler automatically pipelines the innermost loops in the MAP

function, however to avoid stalls in the pipeline the user must ensure that there are

no loop-carry memory dependencies or loop-carry scalar dependencies. In both cases,

the pipeline will stall until the values generated in the previous iterations are updated.

Further, the OBM banks on the MAP are single ported, which means multiple access

to the same OBM bank is not possible in one clock cycle. Also since the ports are

shared for both reading and writing data, there is a penalty of two cycles associated

with switching between read and write modes. An extra clock cycle per iteration

translates to a MAP execution time that would be 2x slower, thus to outperform a

microprocessor operating at 3.0 GHz with a MAP processor operating at a frequency

of 150 MHz it is critical to avoid such loop delays in the design.

The basic psuedo code for the CPU implementation is as shown in Figure 4.1.

The outer loop iterates over all real atoms, loading the current i atom details such

as position, charge, and neighborlist. The innerloop iterates over the neighborlist of

i, loads the atom details of the current neighbor atom j to proceed with the force
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Figure 4.1: Pseudo code of non-bonded force computations in LAMMPS

computation for the atom pair. The Carte C compiler will automatically generate

stalls in the pipeline to avoid read access conflicts between atom i and atom j. Thus

to avoid stalls in the pipeline, we replicate the atom data across multiple OBM banks,

one copy to be used by i atom and the other to be used by the j atoms.

As shown in lines 21 and 22 of Figure 4.1, the calculated force is updated on

the current atom i and using Newtons third law, an equal and opposite force is added

to the j atom. Updating the force on the OBM banks at the end of each iteration

requires a read followed by a write access to the same bank. Updating forces on the

same bank implies multiple accesses, as well as a switch between read and write modes

to the bank, both of which take an extra clock cycle due to the hardware limitations
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discussed earlier in this section. Therefore, we must avoid updating the forces on the

same bank. The forces for i atoms can be summed without stalls using the stream-

based floating-point accumulator (stream fp accum 32 rr term) available in Carte

C. Summing the forces for the j (neighbor) atoms is however a problem due to the

random nature of the memory indexes.

We consider three design options to avoid pipeline stalls due to updates to the

j atom’s forces on the MAP processor. We now will estimate the computation time,

communication times, and the speed-up achievable with each of the design options.

Design 1 - Perform the force summations on the host: This option

requires transferring the forces computed for each of the 12 million pairs and updating

the forces array on the host iterating over all pairs. Transferring the forces back to

host does not involve additional overhead since we perform a streamed DMA transfer

overlapping with the force computation. However since the host starts the forces

update loop only after the MAP completes its execution, updating the forces on the

host will take additional time. The timing estimation for Design 1 is shown in Figure

4.2, tDMA in is the time required to transfer the atom position data every time-step,

and tNL copy is the time required to copy the cumulative neighborlist to the GCM

bank. With a communication bandwidth of 3.6 Gbps, tDMA in will be 0.3 ms for the

rhodo benchmark containing 32K atoms; and to copy a neighborlist of size 12 million,

tNL copy is estimated to be 13 ms and since tnl copy occurs only during a neighborlist

build (typically, once in eight time-steps), the per step contribution of this data

transfer is 1.7 ms. As estimated in the previous section, the force calculation time

t calc is about 80 ms in a stall-free pipeline. The time taken to transfer the forces

for 12 million atom pairs to the host, tDMA out, is estimated to be 53 ms ((12 million

x 4 x 4 bytes)/3.6 Gbps). Since the forces are transferred as they are produced by

the compute loop, the time tDMA out is hidden by the the computation time. Simple
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Figure 4.2: Estimated time in Design 1

experiments show that performing 12 million iterations and updating force arrays

on the host would take 250 ms (tf update). Thus, the total time taken per step to

compute the non-bonded forces will be 332 ms, which will be a speed-up of about

3.6x, when compared to the un-accelerated non-bonded force computation time of

990 ms/time-step. Combined with the full application this acceleration translates to

1.88x overall speed-up of the LAMMPS simulation time for rhodo.

Design 2 - Turn off Newton’s third law: The force summations for j

atoms can be entirely avoided by turning off the Newton’s third law flag in LAMMPS

and using a full neighborlist. The timing estimation for Design 2 is shown in Figure

4.3. With a full neighborlist, the number of non-bonded atom pairs increases by a

factor of two, thus the computation time tcalc increases to 160 ms, twice the value of

Design 1. Further, the time required to copy the neighborlist to the GCM (tNL copy)

increases to 27 ms (24 million x 4 bytes/3.6 Gbps) per transfer, which is equivalent to
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Figure 4.3: Estimated time in Design 2

3.3 ms per time-step. However in contrast to Design 1, we avoid the loop of 12 million

iterations on the host required to perform the force updates. The value of tDMA in

remains the same as Design 1, thus the estimated time/step spent in non-bonded

force calculation, tNBF compute, is 163 ms, which is an acceleration of about 990/163

= 6x over the compute time for the pair-wise calculations on the host. The main

disadvantage of this design is the increased time spent building the neighborlist on

the host. The time spent building the neighborlist would typically double for a full

neighborlist generation. Profiling rhodo shows that the time spent in half neighborlist

generations during a 100 time-step execution is 23 s (16 % of total execution time),

we expect this time to increase to 46 s for a full neighborlist creation. Thus the overall

speed-up for the application will be 1.7x.

Design 3 - Buffered copy of forces: In [13], the authors propose a method

for reading the neighbor atom forces from the OBM bank, updating and storing them

temporarily on an FPGA block RAM array, and at the end of iterations over all
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neighbor atoms of the current i atom, copying the forces back to the OBM. Pipeline

stalls due to memory dependencies could be avoided with this method, however the

compute pipeline must be drained at the end of every i iteration. The authors

estimate the time consumed for this method as tcalc = n(N + p) +n(N + 1) +n+ sn,

where n is the total number of real atoms, p is the pipeline depth, N is the average

number of neighbors per real atom and s is the sum of switching delays of the OBM

between read mode to write mode and write mode to read mode. For the Rhodopsin

benchmark of 32000 atoms and 375 neighbors on an average implemented on a pipeline

of depth of 495 stages (estimated based a basic design implementation), the time

tcalc = 270ms, and tNBF compute=272ms (tstep = tNL copy + tDMA in + tcalc), which

translates to a speed-up of 3.6x for the compute function and an overall speed-up of

about 2x for LAMMPS.

Estimation of neighborlist build time on the FPGA: The total num-

ber of atoms in the system, which includes the real atoms and the ghost atoms, is

represented as nall. The number of atoms that are ”owned” by a parallel task is

represented as nlocal. The neighborlist build function on the FPGA iterates over

every possible atom in the system to check if the atom falls within the cut-off distance.

Our initial design for the neighborlist build function, consists of four pipelines and

each pipeline computes the nieghborlist for nlocal/4 atoms. For every nlocal atom

i, an inner loop iterates over nall j atoms in the system. If the j atom is not in the

special atoms (bonded atoms) list of atom i and if the distance between the current

atom and the neighbor atom j is less than the cut-off distance, which is maximum

of the LJ cut-off and Coulombic cut-off, the index j is added to the neighborlist of

atom i. Since all four pipelines iterate over the same list of nall j atoms in the

system, the coordinates of the j atom can be read once and streamed to all four

pipelines. However, each pipeline has a different set of i atoms, and thus needs a
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separate copy of the atom coordinates data to avoid multiple access to OBM banks

(and therefore avoid stalls in pipeline). Two OBM banks are required to store the i

atom coordinates for each pipeline and two OBM banks are required to store the j

atom coordinates to be streamed to all four pipelines. Thus the proposed design with

four pipelines requires 10 OBM banks to store the atom coordinates data. Further

the special atoms list is stored in two OBM banks and one additional OBM bank is

used to store the number of special atoms for each atom i. Thus a total of 13 of the

16 available OBM banks will be required, limiting any further increases in number of

pipelines.

The neighborlist build time on the FPGA can be calculated as Average number

of iterations per pipeline / FPGA clock frequency. Number of iterations per pipeline

= (nlocal/number of pipelines) x nall x avg. no. of special atoms per i atom +

number of stages in the pipeline. For rhodo nlocal = 32K (i atoms) and nall =

80K and each i atom has about 4 special atoms on average. From our initial imple-

mentation, we estimate the pipeline depth to be about 80 stages.Thus, based on the

FPGA operating frequency of 150 MHz, the estimated time per neighborlist build is

about 17 seconds on the FPGA (versus 2.4 seconds on the host). Clearly this design

is about 6x slower than a half neighborlist build on the host processor. In spite of

the reduction in neighborlist copy time (tNL copy), the current design of the neigh-

borlist build function does not improve the overall performance of LAMMPS. The

inefficiency in the FPGA implementation is due to the increased number of iterations

(full neighborlist build compared to a half neighborlist on the host processor), lack of

optimizations such as the binning technique used on the host processor that allows

a bin of atoms to be tested or not tested based on whether the bin physically lies

within the cut-off distance of the current i atom. Thus, there is scope for further

design optimization of the neighborlist build function on the FPGA.
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Description Design 1 Design 2 Design 3

Individual speed-up
of Compute function 3.0x 6.0x 3.6x

Overall speed-up with
nlist build on host 1.9x 1.7x 2.0x

Table 4.1: Comparison of projected speed-ups for the three designs

Table 4.1 summarizes the speed-up projections for the three proposed designs

of non-bonded force computations. Though the overall speed-up of LAMMPS execu-

tion is marginally less when compared to Design 1 and Design 3, we chose Design 2 for

our implementation since there is better acceleration provided on non-bonded forces

compute function. Further, Design 2 will provide maximum speed-up among the three

designs if the neighborlist build function on the FPGA could be optimized further

and executed concurrently with the non-bonded force calculations in the future.

4.2.1.2 Optimized Data Transfers

For an application executing on a hybrid architecture, the data movement be-

tween the GPP and the RH, if not handled appropriately, may off-set any acceleration

acheived by the RH [31]. In the following section we analyze the data transfers and

the methodology employed to minimize the overheads.

The data required for the force computations are: the position coordinates

(Px, Py and Pz), charge q, atom type of all atoms in the system, and the neighborlist

for all the real atoms in the system.

Also we need the constant array lj and the PPPM tables. The data stored

in the OBM banks, FPGA block RAMs, and the GCM memory are persistent over

multiple calls to the MAP function (unless otherwise reset by a MAP allocate() or

MAP free() call). Thus to avoid redundant data transfers, we characterize the data
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update and access patterns during runtime and only transfer modified data to the

MAP processor. Table 4.2 lists the data to be transferred and the corresponding

update frequency. The atom positions change during each time-step, so nall x 3

coordinates x 4 bytes of position data are transferred during each time-step. The

atom type and charge on the atoms do not vary every time-step. However, each time

the neighborlist is rebuilt, the ghost atoms in the system change, hence we transfer

the atom charges and types to the MAP processor on every neighborlist build. As

mentioned in the first chapter, LAMMPS uses neighborlists to track pairs of atoms

that interact with each other and the size of the neighborlist varies with the cut-off

distance defined by the user. For the rhodo benchmark, an average of 375 neighbors

are present for each of the 32000 local atoms, which adds up to approximately 12

million elements in a half neighborlist and 24 million in a full neighborlist (used with

newton on and newton off setting respectively). We pack the neighborlists together

in a single integer array cum neighlist, which is of size more than 90 MB for a full

neighborlist. The neighborlist is copied to the GCM memory during each neighborlist

build and the MAP computeForces function streams this list from the GCM into its

compute loop.

4.2.1.3 Avoiding CPU programming idiosyncrasies

Theoretically we can port the LAMMPS C++ function PairLJCharmmCoul

Long::Compute ’as is’ to Carte C (with a few modifications necessary for data trans-

fers and OBM accesses) and execute it on the MAP. However, this would result in

inefficient logic mapping that would likely occupy more FPGA resources than are

available and/or experience severe loop slow downs as discussed earlier. Applications

such as LAMMPS that have been highly optimized for the microprocessors require
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S.No Array Frequency size

1 Px each tStep nall
2 Py each tStep nall
3 Pz each tStep nall
4 q with NList build nall
5 type with NList build nall
6 num neigh with NList build nreal
7 cum neighlist with NList build all pairs
8 lj1,lj2,lj3,lj4 first tStep 4 x n1 x n1
9 PPPM tables(r,dr, first tStep 8 x n2 x n2

c,dc,e,de,f,df)

Table 4.2: Data transferred from host to the MAP.For Rhodopsin benchmark
all pairs=24 million and nall=80k approximately,n1=69 and nreal=32k.

code modifications and optimizations to better suit the FPGA programming model.

We have discussed some design-level changes made to avoid stalls in the compute

pipeline, in this section we discuss the code modifications made to enable efficient

resource utilization.

Branch controls in microprocessors imply that different sets of instructions

must be loaded, decoded and executed depending on which path of the branch is

taken. However, in an FPGA, the function as a whole is translated to hardware.

Irrespective of the branch outcome, data flows through both branches of the circuitry

and a selection process occurs on the resulting value based on the branch control.

The PairLJCharmmCoulLong::compute function uses PPPM table-based calculations

to avoid more complex calculations for pairs of atoms that satisfy the cut-off distance

for table-based approximation. This method is a good optimization for microproces-

sors, however on an FPGA, this approximation adds an additional overhead. Apart

from introducing additional control logic, which is not ideally suitable for an FPGA

architecture, the table-based calculations consume resources in addition to the al-

ready existing logic for the non-approximated calculation. We thus modify the code
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to better suit the MAP processor architecture by avoiding the table-based approxi-

mations and branching conditions wherever possible. For example, we do not check

the condition rsq<cut bothsq, to check if a particular pair of atoms needs to pass

through the calculations or not, we rather test the condition at the stream source for

forces to determine whether to place the force calculated for the pair in the stream

or not.

4.3 Implementation

Taking advantage of the High-Level language (HLL) to circuit translator avail-

able in the SRC Carte Programming environment, we develop the MAP computeForces

function in SRC Carte C (version 3.2). SRC Carte C is very similar to the ANSI C

programming language, except for specialized macros for optimization and communi-

cation tasks. In this section, we discuss the steps taken to develop a Carte C version of

the pairwise non-bonded force computations function. The pair style setting in the

LAMMPS input script is used to identify the functions that must be invoked for the

pair-wise force computations. For example The Rhodopsin benchmark uses the pair-

style lj/charmm/coul/long, which invokes PairLJCharmmCoulLong::compute, the func-

tion that consumes 70% of execution time during profiling. New pair-styles could be

easily added to LAMMPS by modifying the user style header file.

We create a new pair style lj/charmm/coul/long/fpga identical to

lj/charmm/coul/long except that the PairLJCharmmCoulLongFPGA::compute func-

tion used by the former, off-loads the pair-wise force computations to the

MAP computeForces function that executes on the MAP processor. We create two

Makefiles for LAMMPS Make.intel MAP debug and Make.intel MAP hw. While
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both compile LAMMPS functions to be executed on the GPP with the Intel com-

piler, the former invokes the MAP debug mode compilation process to compile the

MAP Computeforces function and the latter invokes the MAP HW mode compilation,

which includes the P&R procedure for creating the FPGA bitstream for the MAP

processor. We use the MAP debug mode during initial stages of development to verify

functionality and results. LAMMPS data structures are in the form of C++ classes,

which cannot be directly used in the Carte C function MAP ComputeForces. Further,

all data used by MAP ComputeForces function must be accessible by the MAP pro-

cessor, in other words, available in one of the three memory locations: FPGA RAM

blocks, OBM banks, or the GCM. Thus data in the form of LAMMPS C++ classes

are copied to one-dimensional arrays and transferred to one of the three memory

locations accessible to the MAP processor. Since the MAP ComputeForces function

operates on single precision data, all data transferred to the MAP processor is down-

casted to single precision. Though MAP ComputeForces operates on 32-bit data, all

data acccessed from the OBM banks will be in the form of 64-bit words, since the

OBM banks are 64-bit wide. Thus for efficient data accesses from the OBM banks

and to save communication bandwidth between the host and the MAP, we pack pairs

of 32-bit words into 64-bit words on the host before they are transferred. We pair the

32-bit words from two different arrays, such that when a 64-bit word is accessed by

the MAP processor, both the even and odd words are used. Each of the 64-bit arrays

are stored in a separate OBM bank as shown in Figure 4.4. The array consisting

of Px and Py are stored in AL, Pz and q are stored in AH, the atom types tp and

the neighborlist size of each of the real atoms, nn, are stored in CL. The contents of

banks AL and AH are replicated on banks BL and BH and the contents of CL are

replicated on bank DL to avoid atoms i and j competing for the same ports. Atom

i data is accessed from AL, AH and CL while atom j data is accessed from BL, BH
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Figure 4.4: Data stored on the OBM, GCM and block RAM

and DL.

To overlap computation with communication, the compute loop and the

streamed data transfers are in separate parallel sections as shown in Figure 4.5.

There is a parallel section that receives a 64-bit wide incoming stream of cumula-

tive neighborlists and creates a 32-bit wide stream for the compute loop, which will

consume one 32-bit integer per clock cycle. The compute loop, which executes in

parallel to the data streaming, uses the index from the neighborlist stream to access

the OBM bank for the j atom data. Since the data is packed together as 64-bit

words, we split the data accessed from the OBM banks into two 32-bit floats. The

compute loop computes the LJ and Coulombic forces and produces fpair x, fpair y,
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Figure 4.5: The MAP computeforces function

and fpair z for the interacting pair of atoms in each iteration. To avoid stalls in the

pipeline caused by the force update on the i atoms, as discussed in the design section,

we use the stream-based floating-point accumulators available in the Carte macro:

stream fp accum strm counts 32 rr term. This macro internally implements two

floating-point adders and thus is capable of taking in a new float input value every

clock cycle. Use of this macro allows us to avoid loop delays on the accumulations

for i atoms.

The result streams from the macros contain the floating-point sums, force *[i],

produced at the end of every neighborlist for a real atom i. force x, force y, and

force z are received from these streams and packed into a 128-bit wide stream in

another parallel section. The 128-bit streams are received in the final parallel section
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that streams the data back to the host. Packing the data into 128-bit wide streams is

done to save bandwidth during the data transfers between the MAP processor and the

host. The Pair::ev tally function is in-lined in the compute loop to avoid function

calling overheads and reduce data transfers between the host and the MAP processor

as explained in Section 4.1.

Single precision floating-point accumulators were initially used to perform the

virial summation over the 12 million iterations. However, the energy values vary by

more than 10−2 Kcal right from time-step 0, when compared to double precision ex-

ecution on the Xeon processor. Analyzing the virial values being accumulated, we

identified the source of the discrepancy as the lower precision used for the virial

summation. Thus to improve accuracy, we use 64-bit floating-point macros for the

virial term summations. The resultant implementation has an acceptable deviation

(less than 1%) from the host-only execution results. The accuracy of the implemen-

tation will be discussed in further detail in Section 5.1

The accumulated results for virial[0 to 6] and variables eng vdwl and eng coul

are passed back to the host function. All of the results, forces and the virials are

assigned to the LAMMPS variables in the host code.

Thus LAMMPS was successfully partitioned to off-load the compute-intensive

non-bonded force computations to the reconfigurable hardware, and an optimal de-

sign was chosen and implemented. In Chapter 5 we discuss the results in terms

of performance and simulation outputs when compared to that of GPP version of

LAMMPS.
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Chapter 5

Results

In this chapter, we present the experimental results that validate our imple-

mentation and discuss the performance improvements achieved by the MAP accel-

eration of non-bonded force calculations. We also analyze the time consumed for

different modules of the MD simulation and their individual speed-ups. Further,

based on the experimental results, we review the theoretical performance projections

made in Chapter 5.

5.1 Validation

We validate our implementation by comparing the energies computed in mixed-

precision by the MAP-accelerated code (SW+HW) with the energies computed in

double-precision by the host-only (SW) execution of rhodo for 1000 time-steps. The

graph in Figure 5.1 shows the total energy of the system plotted for every 50th time-

step. As seen in the graph, the total energy in mixed-precision and double-precision

executions diverge slightly (less than 1%) after 500 time-steps. This divergence is a

result of the approximation errors in the single-precision computation of non-bonded
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Figure 5.1: The total energy of the system plotted for every 50th step for rhodo

forces on the MAP processor. Further, the order of the floating-point operations in

the non-bonded force computations differ in the MAP and host implementations, also

contributing to the differences in the results.

5.2 Performance

LAMMPS simulation configurations such as the duration of the time-steps,

number of time-steps, newton (third law) on/off flag, the skin distance used for

neighborlist rebuilds, pair-style to be used for force calculations, etc., are set in the

LAMMPS input-scripts. We compare our results using three different pair-styles with

1 fs time-step and 2 fs time-step execution of rhodo for 100 time-steps. The three

pair-styles used are:
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• lj/charmm/coul/long - SW-only execution with newton on and half neighborlist

• lj/charmm/coul/long/full - SW-only execution with newton off and full neigh-

borlist

• lj/charmm/coul/long/fpga/full - SW+HW execution with newton off and full

neighborlist

The time-to-solution (overall time) of rhodo and the division in terms of the

time spent in non-bonded force computations (pair time), neighborlist build, and the

remaining modules (neigh+others time) for the pair-styles listed above are presented

in Table 5.1. Using the pair-styles listed earlier in combination with the newton on/off

flag settings, full neighborlist and half neighborlist simulations were performed for 1 fs

and 2 fs time-steps. Further, the skin distance setting was varied to control the time

spent in neighborlist rebuilds. The pair time in the SW+HW execution, represents

the time spent in the MAP processor computing the non-bonded forces plus the data

transfers between the MAP and the host.

Comparing an equal number of computations (i.e. simulations with full neigh-

borlist) on the Xeon (lj/charmm/coul/long/full) and the MAP (lj/charmm/coul/-

long/fpga/full) for 2 fs time-steps and 2 Å skin distance, we are able to accelerate

the non-bonded force calculations alone by a factor of 8 while the overall application

speed-up is 2.4x. The full neighborlist versions require twice the number of computa-

tions to compute the pair-wise forces as the half neighborlist versions. On the FPGA,

the force computations with the full neighborlist version performs better than the

half neighborlist implementation on the FPGA as explained in Section 4.2.1. How-

ever on the host, the SW implementation of non-bonded force computations with a

full neighborlist takes twice the time as the non-bonded force computations with a
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Simulation settings
Execution time (s)

SW SW+HW

newton Skin pair
neigh

Overall pair
neigh

Overall
+others +others

Time-step = 2 fs
ON 2.0 Å 99.48 44.52 142.96 - - -
OFF 2.0 Å 160.07 50.85 210.92 19.97 69.48 89.45
OFF 3.0 Å - - - 23.28 48.95 72.23
OFF 4.0 Å - - - 27.95 41.41 69.36
Time-step = 1 fs
ON 2.0 Å 101.25 30.89 132.14 - - -
OFF 2.0 Å 335.78 42.4 378.18 18.59 41.48 60.17
OFF 3.0 Å - - - 22.70 36.61 59.31
OFF 4.0 Å - - - 27.26 27.64 54.90

Table 5.1: Performance comparisons of 100 time-step execution of rhodo (1 fs and 2
fs time-steps)

half neighborlist. Thus a more realistic performance comparison uses a full neigh-

borlist execution in the SW+HW mode (lj/charmm/coul/long/full/fpga) and a half

neighborlist execution in the SW-only mode (lj/charmm/coul/long). The pair time

of 19.97 s in the SW+HW mode is about a 5x speed-up when compared to the 99.48 s

in the SW mode. The performance improvement achievable through deep pipelining

the force computations in the FPGA is evident from the fact that the time taken by

the MAP processor to compute non-bonded forces for about 24 million pairs is 1/5th

the time taken by the Xeon processor to perform non-bonded force computations for

about 12 million pairs. However, in spite of the 5x speed-up of the non-bonded force

computations, the overall time-to-solution has improved by only 1.6x for the rhodo

benchmark with 2 fs time-steps.

In Section 4.2.1, the estimated overall speed-up of 1.7x over the SW execution

with newton on and 2 Å skin distance, was based on an estimated speed-up of 6.0x

over pair time. We estimated an average of 173 ms/time-step for the non-bonded
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Figure 5.2: Performance of rhodo in SW and SW+HW modes with 2 fs time-steps
and 2 Å skin distance

force computations on the MAP processor, but the actual measurements show 200

ms/time-step spent in the non-bonded force computations. The difference is due

to the memory allocation and data copy overheads that were not included in the

estimations and the MAP function calling latency, which is about 10 ms per call.

Thus, with the experimental result of 5x speed-up of pair time, we achieved an overall

speed-up of 1.6x over SW-only execution of rhodo with 2 fs time-step and newton on

setting.

Figure 5.2 shows the performance comparison of rhodo execution with 2 fs

time-steps and 2 Å skin distance in SW mode and SW+HW mode. The graph

clearly shows that the overall performance gain is limited by the increased time spent

in the full neighborlist build, which typically increases by a factor of 2 over a half

neighborlist generation. LAMMPS performs a neighborlist rebuild only when some

neighbor atom has moved more than half the skin distance. Thus increasing the skin

distance from the default value of 2.0 Å, decreases the number of neighborlist builds
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Figure 5.3: Performance comparison in terms of best execution times in SW mode
and SW+HW modes for rhodo (2 fs time-steps)

during the simulation and therefore the time spent in the neighborlist builds (neigh

time). For example, for 100 time-steps simulation of rhodo with time-step = 2 fs

and skin distance = 2 Å, 11 neighborlist rebuilds occur. However, when the skin

distance is increased to 3 Å and 4 Å, the number of neighborlist rebuilds decreases

to 5 and 3 respectively. As shown in Table 5.1, with fewer number of neighborlist

rebuilds the neigh+others time in the SW+HW mode decreases to 48.95 s and 41.41

s for the skin distances of 3 and 4 Å respectively and therefore the overall execution

time decreases to 72.23 s and 69.36 s. The moderate increase in the pair time in

the SW+HW execution with the increase in skin distance is due to the increased size

of the neighborlist with an increase in skin distance. The increase in neighborlist

size increases the number of iterations in the non-bonded forces compute loop and

therefore increasing the pair time.

To make a fair performance comparison, we compare the execution time of

the SW simulation with optimal settings for the SW code (newton on, 2 Å skin
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distance) to the execution time of the SW+HW simulation with optimal settings for

the SW+HW code (newton off, 4 Å skin distance). The best SW execution time and

the best SW+HW execution time are 142.96 s and 69.36 s respectively (shown in bold

face in Table 5.1). Thus, for 2 fs time-step simulations of rhodo, the performance gain

using SW+HW mode is 2x (142.96 s/69.36 s) as shown in Figure 5.3.

The fewer neighborlist rebuilds required for the 1 fs time-step simulations

results in a moderate performance gain, when compared to the 2 fs time-step simu-

lation. For example, during 100 time-step simulations with 2 Å, 3 Å, and 4 Å skin

distances, the 1 fs time-step simulation requires only 5, 3, and 1 neighborlist rebuilds

respectively, whereas, the 2 fs time-step simulation requires 11, 5, and 3 neighborlist

rebuilds respectively. Thus, the 1 fs time-step simulation has a smaller neigh+others

time, resulting in a better overall performance gain of 2.4x when compared to the

2.0x performance gain with the 2 fs time-step simulation.

5.3 FPGA Resource Utilization

Initial implementation prior to the modifications discussed in Section 4.2.1.3,

exceeded the logic capacity available on a single Altera Stratix II device by about 20%.

After performing the modifications to remove unnecessary code (branching conditions

and the table-based interpolation), we were able to map the MAP computeforces

function on a single FPGA. We also had room to use double-precision accumulator

macros instead of single-precision accumulators, for the summation of Virial terms

to improve accuracy (discussed in Section 4.3). The final resource utilization is as

shown in Table 5.2. The logic utilization is 99% and the total registers utilized is

91%, leaving minimal room for any further computations on the first FPGA. The

resource utilization could be reduced with more rigorous optimization steps such as
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using fixed-point arithmetic rather than floating-point. We plan such optimizations

for future implementations.

Resource Used Available Utilization

Logic Utilization (ALUTs & Register pairs) 142,019 143,520 99%
Total registers 136,496 150,386 91%
M512s 327 930 35%
M4Ks 441 768 57%
M-RAMs 0 9 0%
Total block memory bits 1,634,584 9,383,040 17%
DSP block 9-bit elements 546 768 71%

Table 5.2: FPGA resource utilization

In this chapter we presented the results of our implementation. We compared

the energy outputs of the SW+HW implementation with that of the SW version, and

showed that the accuracy of the mixed-precision implementation is within acceptable

deviation. Further, we reviewed the performance gain on the non-bonded force com-

putations and its impact on the overall application performance. The profile results

for the accelerated LAMMPS and the FPGA resource utilization data presented in

this chapter are useful to plan the future directions of this research. In the final

chapter we will summarize the conclusions of this research and future directions we

have planned.
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Chapter 6

Conclusions and Future Work

This research focussed on accelerating biomolecular simulations with an FPGA-

based reconfigurable computer. We identified the bottleneck in the simulation as the

non-bonded force computations and by porting these computations to the FPGA

hardware, we successfully accelerated them by about 5x for rhodo. The 2x increase

in the neighborlist build time, due to the full neighborlist required for the FPGA-

accelerated version of LAMMPS, decreased the overall performance gain to 1.6x for

2 fs time-steps and 2.2x for 1 fs time-steps rhodo simulations with the default skin

distance of 2Å. Increasing the skin distance for the SW+HW executions, decreased

the number of neighborlist rebuilds and improved the overall application speed-up

to 2.0x for 2 fs time-step simulation and 2.4x for 1 fs time-step simulation. These

results and the effect on performance due to simulation configuration changes in the

LAMMPS input-script were discussed in Chapter 5.

Accelerating an application with an FPGA-based reconfigurable system in-

volves significant effort in terms of development, testing and code-optimization. Fur-

ther, the development process may be time-consuming due to the lengthy compila-

tion process. For example, for compute-intensive codes such as the non-bonded force
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computations, the P&R process takes 6 to 8 hours to complete during hardware com-

pilation. Thus, to avoid wasting effort in sub-optimal designs and repeating the entire

cycle, it is useful to perform a thorough design-space exploration prior to the imple-

mentation stage. In Chapter 4, we provided theoretical performance estimations for

the various design-options considered and a discussion on the choice of design for im-

plementation. Thus, this thesis is an example of an efficient design and development

procedure for FPGA-based acceleration.

To our knowledge this is the first fully integrated and fully functional FPGA-

based acceleration of LAMMPS simulator. Thus, the detailed description in Chapter

4 regarding the design options and implementation methodology will be useful for

future LAMMPS implementations on similar FPGA-based reconfigurable systems.

There are several challenges involved in successfully accelerating an application using

an FPGA: the limited FPGA resources for the logic implementation, the limited num-

ber of On Board Memory banks, and the limited number of parallel sections/pipelines

that can be implemented on the FPGA. Further, due to the single-ported nature of the

OBM banks, the data storage and accesses must be carefully planned to avoid extra

clock cycle penalties when accessing data from the same bank. This hazard is par-

ticularly challenging when porting a data-intensive function such as the non-bonded

forces computations function in MD. In Chapter 4, we also discussed optimization

techniques used to reduce the FPGA resource utilization while retaining the required

computational accuracy. In any accelerator based implementation, the data transfer

overheads between the host and the accelerator must be minimized and overlapped

with the computations. Our discussion of the designs and the implementation used

in this thesis provide an overview of the methodology necessary to minimize data

transfer overheads.
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6.1 Future work

We have successfully accelerated the non-bonded force computations to an

extent that it is no longer the dominating function. There are a number of future

directions for this research including accelerating the currently dominant neighborlist

build function on the second FPGA. We showed the theoretical estimation of an

un-optimized design of FPGA-based neighborlist build function in Section 4.2.1. The

design had four pipelines and was estimated to be 6x slower than the half neighborlist

build on the host (i.e. about 3x slower than a full neighborlist build function on the

host). The design could be optimized in the future to reduce the number of iterations

in the pipelines. The SRC-7 H MAP used in this research consists of 16 logical OBM

banks, thus allowing 16 concurrent OBM accesses without any stalls in the pipeline.

With an FPGA-based system that would allow more concurrent data accesses (i.e.

more OBM banks), it will be possible to implement more concurrent neighborlist

computation (pipelines) and thus achieve better performance. Another potential

research direction is to use fixed-point arithmetic instead of floating-point and reduce

the FPGA resource utilization, which may allow us to implement additional force

computation pipelines in the Stratix II FPGA device.

Further, only one of the two cores available on the host is used in the current

implementation. In the future, we plan to implement a threaded version of the FPGA-

accelerated LAMMPS that will make use of both the cores available on the dual-

core Xeon host and both the FPGAs available on the MAP processor. Such an

implementation will be the most resource-efficient implementation on a single SRC-7

H MAP reconfigurable system. We then plan to extend this work to a cluster of

MAPstations and study the effect of FPGA acceleration on the parallel execution of

LAMMPS.
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