2-11-2004

Oxygen in Open Cluster Dwarfs: Pleiades and M34

Simon C. Schuler
Clemson University

Jeremy R. King
Clemson University, jking2@clemson.edu

L M. Hobbs
University of Chicago

Marc H. Pinsonneault
Ohio State University

Follow this and additional works at: http://tigerprints.clemson.edu/physastro_pubs

Part of the Astrophysics and Astronomy Commons

Recommended Citation
Please use publisher's recommended citation.
1. INTRODUCTION

The current state of mapping stellar O abundances may be best described as convoluted. This is quite unfortunate given the possibly critical role the [O/Fe] ratio plays in understanding the chemical evolution of the Galaxy (Wheeler, Sneden, & Truran 1989). Excellent reviews of stellar O abundances and their importance are given by King (1993), Israelian, García López, & Rebolo (1998), Nissen et al. (2002), Takeda (2003), and references therein. A matter of great spectroscopic interest is the often reported discrepancy between O abundances derived from the high-excitation O i λ7774 triplet lines (hereafter the triplet) and those derived from the low-excitation [O i] forbidden lines at 6300 and 6363 Å. While observational evidence indicates that the triplet yields higher O abundances than does [O i] for solar metallicity dwarfs with \(T_{\text{eff}} > 6300 \) K (King & Boesgaard 1995) and highly evolved metal-poor subgiants (e.g., Cavallo, Pilachowski, & Rebolo 1997), the current picture for stars in other temperature and metallicity regimes is unclear or a matter of contention. Conventional wisdom holds that the triplet forms in non-LTE (NLTE) conditions, while the [O i] lines are well described by LTE calculations (Kiselman 1991; Takeda 2003). Thus, the permitted forbidden O abundance discrepancies are usually attributed to the triplet and to NLTE effects.

Aside from understanding the physical environment of stellar atmospheres, knowledge of the conditions (NLTE or otherwise) affecting the formation of the triplet is highly desirable for a genuinely practical reason. Namely, the triplet is much stronger and more easily measured in stellar spectra than the [O i] lines are. In fact, the [O i] lines become vanishingly weak in late G and K dwarfs. Corrections for the effects of NLTE conditions, if present, are needed for the triplet if accurate abundances are going to be derived from these features. However, the extent of NLTE effects on the derived triplet abundances is not clear. Studies have indicated that the magnitude of the effects may be dependent on metallicity (e.g., Nissen & Edvardsson 1992), temperature (e.g., Takeda 2003), and/or systematic errors (e.g., King & Boesgaard 1995). Furthermore, O data for metal-rich ([Fe/H] ≥ 0) dwarfs are sparse.

In open clusters we find collections of presumably chemically homogeneous, coeval stars that offer a unique scrutiny of stellar processes. Cluster members are distinguished by mass, and thus the spectroscopic delineation of possible temperature-dependent effects and any model atmosphere inadequacies that are otherwise difficult to identify in assemblages of field stars is facilitated. Examples of this are the discovery of the Li gap in the Hyades open cluster (650 Myr; Boesgaard & Tripicco 1986) and the large Li abundance scatter observed among cool Pleiades dwarfs (Soderblom et al. 1993a). Here we describe our analysis of O abundances of late F, G, and early K dwarfs in the Pleiades (100 Myr) and M34 (250 Myr) open clusters. We address the adequacy of deriving triplet-based O abundances in warm/cool cluster dwarfs.

2. OBSERVATIONS AND ANALYSIS

Pleiades targets were chosen from cool members that were previously reported to display large dispersions in Li (Soderblom et al. 1993a; Jones et al. 1996). Echelle spectra of the Pleiades stars were obtained with the 9.2 m Hobby-Eberly Telescope (HET) and the High Resolution Spectrograph (HRS). The HET data presented herein were obtained on 22 separate nights starting on 2002 August 23 UT and ending on 2003 February 17 UT. The HET/
HR8 detector is a 4096 × 4100 side-by-side CCD mosaic of two 2048 × 4100 CCDs with 15 μm pixels. The instrumental configuration consisted of the 316g6948 cross-disperser, 3’ fiber, and 2 × 2 binning. A wavelength coverage of 5095–8860 Å was achieved with typical per pixel signal-to-noise ratios of 100. A slit width of 0.5 (4.2 pixel–projected) was used, giving a resolving power of 60,000. The initial CCD mosaic image contains the spectra from both the blue and red CCDs; each chip was reduced individually using standard IRAF routines to remove the bias pattern, subtract scattered light, flat-field, and wavelength-calibrate the data. M34 data were obtained with the Keck I 10 m telescope individually using standard IRAF routines to remove the bias pattern, subtract scattered light, flat-field, and wavelength-calibrate the data. M34 data were obtained with the Keck I 10 m telescope and the HIRES echelle spectrograph (Vogt 1992). The spectra have a resolution of R = 45,000 and a typical per pixel signal-to-noise ratio of 70. These data are those described and utilized to-noise ratio of 70. These data are those described and utilized to-noise ratio of 70.

Equivalent widths of the O i infrared triplet for 15 Pleiades and eight M34 dwarfs were measured using the one-dimensional spectrum analysis software package SPECTRE (Fitzpatrick & Sneden 1987). Solar equivalent widths were measured in the same manner from sky spectra obtained at HET and lunar spectra obtained at Keck I. All of the O i features were fitted with Gaussian profiles. Oxygen abundances have been derived using an updated version of the LTE stellar line analysis software package MOOG (2002 ver.; Sneden 1973). Final O abundances derived from the triplet are reported relative to the Sun and are thus essentially independent of adopted g-f-values; the equivalent widths and final abundances are listed in Table 1. Relative errors in the [O/H]Trip abundances were calculated by considering the abundance sensitivities to uncertainties in line strength, T eff, and log g. Line-strength errors are due to photon noise and are generally 2.7 and 3.7 m for the Å forbidden line ([O i]λ6300); selection effects related to possible line enhancement due to background noise can result in overestimated uncertainties due to equation (16.2) of Gray (1992) is estimated to be 0.10 dex, which we have adopted as the error in log g. The individual [O/H]Trip sensitivities to line strength, T eff, and log g were added in quadrature to obtain the final relative uncertainty for each star. The typical relative uncertainty in [O/H]Trip is ±0.08 dex for stars in both clusters.

Intermediate signal-to-noise ratio spectra require care to be taken when identifying and measuring the notoriously weak 6300 Å forbidden line ([O i]λ6300); selection effects related to possible line enhancement due to background noise can result in overestimated

Table 1

<table>
<thead>
<tr>
<th>STAR</th>
<th>(B−V)0 (mag)</th>
<th>T eff (K)</th>
<th>ξ (km s−1)</th>
<th>log g (cgs)</th>
<th>λ7771</th>
<th>λ7774</th>
<th>λ7775</th>
<th>[O/H]Trip</th>
<th>OVER</th>
<th>NOVER</th>
<th>MLT5</th>
<th>CGM72</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ii 0193</td>
<td>0.750</td>
<td>5339</td>
<td>0.58</td>
<td>4.61</td>
<td>48.7</td>
<td>43.4</td>
<td></td>
<td></td>
<td>0.31</td>
<td>0.32</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>H ii 0250</td>
<td>0.645</td>
<td>5715</td>
<td>0.96</td>
<td>4.55</td>
<td>78.2</td>
<td>61.1</td>
<td>59.8</td>
<td></td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>H ii 0263</td>
<td>0.840</td>
<td>5048</td>
<td>0.30</td>
<td>4.64</td>
<td>...</td>
<td>45.6</td>
<td>55.2</td>
<td></td>
<td>0.97</td>
<td>1.00</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>H ii 0298</td>
<td>0.835</td>
<td>5048</td>
<td>0.30</td>
<td>4.64</td>
<td>43.2</td>
<td>...</td>
<td>34.7</td>
<td></td>
<td>0.58</td>
<td>0.60</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>H ii 0571</td>
<td>0.748</td>
<td>5373</td>
<td>0.61</td>
<td>4.60</td>
<td>61.6</td>
<td>55.4</td>
<td>48.9</td>
<td></td>
<td>0.50</td>
<td>0.51</td>
<td>0.48</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Note.—Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

Table 2

<table>
<thead>
<tr>
<th>STAR</th>
<th>λ6300 EW (Å)</th>
<th>[O/H]λ6300</th>
<th>OVER</th>
<th>NOVER</th>
<th>MLT5</th>
<th>CGM72</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ii 0571</td>
<td>6.6</td>
<td>±0.10</td>
<td>0.13</td>
<td>±0.11</td>
<td>0.14</td>
<td>±0.11</td>
</tr>
<tr>
<td>H ii 2284</td>
<td>6.9</td>
<td>±0.15</td>
<td>0.16</td>
<td>±0.16</td>
<td>0.18</td>
<td>±0.14</td>
</tr>
<tr>
<td>H ii 2406</td>
<td>6.6</td>
<td>±0.16</td>
<td>0.13</td>
<td>±0.16</td>
<td>0.15</td>
<td>±0.16</td>
</tr>
<tr>
<td>Sun</td>
<td>5.5</td>
<td>8.76</td>
<td>...</td>
<td>8.73</td>
<td>...</td>
<td>8.69</td>
</tr>
</tbody>
</table>

Note.—Equivalent widths are given in milliangstroms and include the λ6300.32 Ni i feature.

7 See http://kurucz.harvard.edu/grids.html.
8 See http://ams.astro.univie.ac.at/nemo.
The results of our analysis of both the Pleiades and M34 data are presented in Figure 1; all abundances are given relative to the Sun. The most striking aspect of the figure is the dramatic increase in [O/H]_{Trip} with decreasing \(T_{\text{eff}} \) seen for both clusters, independent of model atmosphere; model-to-model spreads are \(\lesssim 0.05 \) dex for each star, well within the typical errors. Our results confirm the preliminary finding of [O/H]_{Trip} overabundances in two cool Pleiades stars reported by King et al. (2000b). We also identified and measured the high-excitation \(\lambda 6052.67 \) line in the spectra of three Pleiades stars—\(H \equiv 0193, H \equiv 0571, \) and \(H \equiv 3179 \)—and the Sun. The relative [S/H] abundances appear to mimic the behavior of the [O/H]_{Trip} abundances (Fig. 1), suggesting that the [O/H]_{Trip} trend is not unique in these stars. Although we cannot rule out inadequacies shared by the atmospheres used here, it appears that the observed trends are independent of the convective treatment and value of the mixing-length parameter.

Schuler et al. (2003) observed an increase in Si abundances with decreasing \(T_{\text{eff}} \) and, concurrently, a decrease in Fe, Ti, Cr, Ca, Al, and Mg abundances with decreasing \(T_{\text{eff}} \) for nine M34 dwarfs, seven of which are in the current M34 sample. The Si abundances were derived from moderately high excitation lines (\(\chi \approx 6.0 \) eV), and the abundances of Fe, Ti, Cr, Cu, Al, and Mg were derived from low-excitation lines (\(\chi \approx 2–4 \) eV). Schuler et al. suggested a scenario of overexcitation/ionization in the cool members as a possible source for the observed abundance trends. The behavior of [O/H]_{Trip} and [S/H] observed in the Pleiades and M34 is consistent with this scenario. Additionally, Ford, Jeffries, \& Smalley (2002) found that the \(\lambda 6104 \) line (\(\chi = 1.848 \) eV) yielded a higher abundance than the \(\lambda 6707 \) resonance line (\(\chi = 0 \)) for Pleiades stars (\(5172 K \leq T_{\text{eff}} \leq 5449 K \)) for which they had definite \(\lambda 6104 \) equivalent width measurements; their findings are also in agreement with the hypothesis of overexcitation/ionization conditions in the cool Pleiades stars.

The O abundances derived using the [O I]_{3060} line are also found to be independent of model atmosphere but are considerably lower than the triplet O abundances in the cool Pleiades stars (Fig. 1). The triplet is known to be susceptible to NLTE effects, but the [O/H]_{Trip}, \(T_{\text{eff}} \) trend presented here is not accounted for by current NLTE calculations that predict \(\log N(O_{\text{trip}}) \) increases with

Fig. 1.—Pleiades and M34 relative O abundances as derived from the \(\lambda 7774 \) triplet vs. effective temperature. Pleiades and M34 abundances are plotted as triangles and squares, respectively. The relative triplet abundances derived from each of the four grids of model atmospheres are plotted, without individual error bars; the typical error in the relative triplet abundances (0.08 dex), which is the same for both clusters, is given as the vertical error bar. [S/H] abundances for \(H \equiv 193, H \equiv 571, \) and \(H \equiv 3179 \) are also shown plotted as crosses. The horizontal bar represents the mean [O/H]_{3060} abundance spanning the \(T_{\text{eff}} \) of the three Pleiades stars for which the forbidden line was measurable. The mean is the average of the abundances derived using the four different model atmospheres.

Fig. 2.—Pleiades relative triplet abundances vs. effective temperature. Open circles are the original abundances derived using the OVER grids. Red triangles and squares, respectively. The relative triplet abundances derived from each of the four grids of model atmospheres are plotted, without individual error bars; the typical error in the relative triplet abundances (0.08 dex), which is the same for both clusters, is given as the vertical error bar. [S/H] abundances for \(H \equiv 193, H \equiv 571, \) and \(H \equiv 3179 \) are also shown plotted as crosses. The horizontal bar represents the mean [O/H]_{3060} abundance spanning the \(T_{\text{eff}} \) of the three Pleiades stars for which the forbidden line was measurable. The mean is the average of the abundances derived using the four different model atmospheres.
creasing temperature (e.g., Takeda 2003). Indeed, the reanalysis of published triplet equivalent width data by Takeda utilizing his NLTE corrections generally resulted in agreement between [O/H]_{trip} and [O/H]_{3000} for disk stars (−1 ≤ [Fe/H] ≤ 0), suggesting that the results presented here may not be due to canonical NLTE effects. Alternatively, perturbations in local photospheric conditions due to spots, faculae, and/or plages in the cool Pleiades and M34 dwarfs might give rise to the abundance behavior seen in Figure 1. Studies have shown that reasonable areal coverages (>50%) can account at least partially for the observed Li abundance spreads in cool Pleiades dwarfs (Barrado y Navascués et al. 2001; Ford et al. 2002). Stauffer et al. (2003) suggest that such inhomogeneities are the cause of the long known, marked color anomalies in cool Pleiades stars, for which King et al. (2000a) note that color deviations are correlated with chromospheric emission deviations. If surface inhomogeneities are at work in the cool dwarfs, the lack of similar color anomalies in the older Hyades and Praesepe clusters portends less anomalous [O/H]_{trip} values for them than seen here. We note the reduced Fe ii-Fe i abundance differences at a given Teff recently reported for the Hyades (Yong et al. 2004) compared with those seen for the younger M34 (Schuler et al. 2003) as limited support for the role of age in the abundance anomalies.

Another notable aspect of Figure 1 is the appearance of O abundance spreads below 5300 K for the Pleiades stars and below 5800 K for the M34 members. The M34 abundance spreads are generally smaller than those in the Pleiades, but the spreads in both clusters exceed the typical uncertainty. Similar [O/H] spreads have been reported in Hyades and UMa group stars with 5800 K < Teff < 7150 K (García López et al. 1993). Takeda (1995) suggested that the presence of a chromosphere (a global property distinct from spots) influences triplet line formation; we investigated this effect by plotting [O/H]_{trip} against Hα and Ca ii chromospheric emission data from Soderblom et al. (1993a) and Soderblom, Jones, & Fischer (2001). No correlation between the triplet abundances and chromospheric emission was found for either cluster. A correlation between [O/H]_{trip} residuals and chromospheric emission residuals—differences between observed and Teff-dependent mean values—is also not present. While this might suggest that triplet abundances are affected by local forms of “activity” (spots, faculae, and/or plages) as opposed to a global chromosphere, we point out that the chromospheric emission data and our data are not cotermporal.

Pinsonneault et al. (2004) have questioned the adequacy of stellar temperatures derived from colors, arguing that luminosity-temperature relations are in better agreement with spectroscopically derived temperatures. We thus rederived the triplet abundances (using the OVER grids) with new temperatures calculated using absolute magnitudes of each Pleiades star in our sample, assuming a distance modulus of 5.63 (Pinsonneault et al. 1998), and a 100 Myr isochrone provided by M. Pinsonneault. The rederived abundances are plotted against the luminosity-based effective temperatures in Figure 2. While the rederived abundances of stars with Teff > 5500 K are brought into close agreement at [O/H] ~ +0.15, the range and scatter of the abundances remain significant among stars with Teff < 5500 K. It seems that the trends, at least among the coolest Pleiades stars, cannot be attributed to inaccurate temperature scales.

In conclusion, we point out that the O abundance derived from the [O i] lines, [O/H]_{3000} = +0.14 (OVER/NOVER models), is approximately the O abundance derived from the triplet lines in the warmest star of the Pleiades sample and the four warmest Pleiades stars on the Pinsonneault Teff scale and provides the best estimate of the cluster O abundance. Choosing the warmest star abundance for the M34 cluster O abundance in a similar manner gives [O/H] ~ +0.04. More observations providing a measurable [O i] line or a resolution to the [O/H]_{trip} behavior in Figure 1 are needed to provide confidence in the adopted Pleiades and M34 cluster O abundances.

S. C. S. thanks the South Carolina Space Grant Consortium for providing support through the Graduate Student Research Fellowship. S. C. S. and J. R. K. gratefully acknowledge support for this work provided by grants AST 00-86576 and AST 02-39518 to J. R. K. from the National Science Foundation. We thank the referee Ramon García López for constructive comments that have led to an improved Letter. We are grateful to U. Heiter, F. Kapka, and J. Nendwich for their assistance with obtaining the MLT5 and CGM72 atmosphere grids as well as to D. Paulson for her helpful communications.

REFERENCES

Fitzpatrick, M. J., & Sneider, C. 1987, BAAS, 19, 1129
Lambert, D. L. 1978, MNras, 182, 249
Takeda, Y. 1995, PASJ, 47, 463