Spectral Transformations of Novae in Andromeda Galaxy

Amanpreet Kaur
Dieter H. Hartmann

Follow this and additional works at: http://tigerprints.clemson.edu/grads_symposium

Recommended Citation
http://tigerprints.clemson.edu/grads_symposium/85
Spectral Transformations of Novae in Andromeda Galaxy (M31)

“The Bulge/Disk bimodal population was called in question by hybrid novae”
Addressing this question with global population studies

Amanpreet Kaur (akaur@clemson.edu), Dieter H. Hartmann
Department of Physics and Astronomy, Clemson University, Clemson, SC - U.S.A.

Abstract

Nova outburst is the nuclear explosion on the surface of a white dwarf, which is caused by mass accretion from its companion star in the binary system. It is commonly believed that novae in Andromeda Galaxy (M31) separate into two distinct populations: bulge and disk in the galaxy. These spatial distinctions in the galaxy appear to correlate with the two spectral types of novae (FeII and He/N). However, recent observations of novae in our own galaxy, Milky Way has demonstrated spectral transformations from Fell to He/N and vice-versa, which calls the spectral distinction between two source classes into question. However, for M31 only one such case is known. Multi epoch spectroscopy is needed to address the questions whether novae in M31 also undergo spectral transformations and whether spatial distinction in the galaxy has any correlation with the spectral type of novae. We construct a spatial distribution model of the stars in M31 and its disk/bulge nova population in order to investigate possible selection effects during observations, that could play a role in spectral - spatial correlations.

Results

Comparison of model and observations of 89 novae

Observations: More novae in the bulge
See Fig. 2a and 2b

Model: More novae in outer disk region
See Fig. 3a and 3b

Reason: extinction in the disk?

Work in Progress

Global Modeling:

- Line of sight extinction model
- Do novae follow light precisely?
 Nova rate : light ratio to be determined
- Environment : wind, interstellar medium

References: