Habitat mediated raccoon response to an artificial increase in coyote activity

Cady Etheredge
Greg Yarrow
Patrick Gerard
Jamie Dozier

Follow this and additional works at: http://tigerprints.clemson.edu/grads_symposium

Recommended Citation
Etheredge, Cady; Yarrow, Greg; Gerard, Patrick; and Dozier, Jamie, "Habitat mediated raccoon response to an artificial increase in coyote activity" (2013). Graduate Research and Discovery Symposium (GRADS). Paper 30.
http://tigerprints.clemson.edu/grads_symposium/30
Habitat mediated raccoon response to an artificial increase in coyote activity

Cady Etheredge¹, Greg Yarrow¹, Patrick Gerard², Jamie Dozier³

¹Clemson University, School of Agricultural, Forest, and Environmental Sciences; ²Clemson University, Department of Mathematical Sciences; ³South Carolina Department of Natural Resources

Abstract

Most predator control programs treat species in isolation, never considering how competition between predators as predicted by the mesopredator release hypothesis (MRH) can result in indirect benefits to ground nesting prey. Understanding these dynamics will be especially important in the southeastern United States, where recent coyote (Canis latrans) invasions may provide systems with a new top predator capable of suppressing booming mesopredator populations. This project indirectly tests the MRH by examining the spatial avoidance of raccoons (Procyon lotor) to areas with artificially increased coyote activity. Radio-collared raccoon home ranges were intensively mapped for one week before and after test plots were treated with coyote urine (impact) or walked but not treated (control). Tracks were conducted inside both 30 and 50% fixed kernel contours to test for differential raccoon responses based on potential habitat mediated tradeoffs between resource availability and predation risk. Habitat variables (habitat type, vegetation density, etc.) were measured at five randomly selected points within each plot as soon as possible after trials ended. No statistically significant differences between treatments were found. This suggests that raccoons do not avoid areas of artificially intensified coyote use, potentially implying that coyotes are not an important source of mortality for raccoons in this system.

Introduction

The concept of top down control of mesopredators indirectly benefiting prey populations is called the mesopredator release hypothesis (MRH). There is strong support for the MRH in a variety of systems, and MRH relationships are particularly robust inside the canid family. However, it is still not clear whether the MRH applies to systems involving coyotes and non-canid mesopredators. The strongest tests of the MRH are from population level studies. However, prey behavior may also be used to infer the strength of a potential predation relationship.

Objectives and hypothesis

This study uses raccoon behavior as an indirect test of the potential predatory relationship between coyotes and raccoons. If coyotes are a significant predator of raccoons, we expect raccoons to avoid areas of high coyote use.

Study site

Located in Georgetown County, SC, the Tom Yawkey Wildlife Center (TYWC) is a 31 mi² wildlife heritage preserve managed by the SC Department of Natural Resources as a waterfowl refuge. Major habitat types include longleaf pine savannah, freshwater bog, saltwater marsh, maritime forest, and waterfowl impoundments. The first coyote was recorded on the TYWC in 2006.

Study design

• Before-After-Control-Impact design
• Before treatment
 • Locations taken 8x/24hr
 • 1 week prior to treatment
• Treatment
 • “Before” home ranges calculated
 • High use = inside 50% contour
 • Low use = outside 50% contour
• After treatment
 • Locations taken 8x/24hr
 • 1 week after treatment

Radio telemetry

• 8 total raccoons radio-collared
 • 5 in January 2011
 • 3 in June 2011
• Telocoms equipment
• Locations triangulated
 • Bearings taken within 15 min
 • LOAS software
• Home ranges computed
 • Locations > 1 hr apart
 • Harmonic mean
 • BIOTAS software

Habitat characteristics

• 5 random points/subplot
• Visibility
 • 4 cardinal directions
• Major habitat type
• Distance to five nearest trees
• % cover, % bare, % water
• Meter square plot

Methods

Coyote urine sprayed every 10-15m along a transect covering the majority of the subplot

Impact: Transect walked but no urine applied

Active control: No transect walked and no urine applied

Results

Table 1. Number of individual raccoons used, plots tested, and focal plots (one plot used to test the response of one raccoon) in each treatment cycle.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Individuals</th>
<th>Plots</th>
<th>Focal plots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Typical before and after locations for a plot used for multiple focal raccoons. Each color represents one individual. Filled and open dots represent before and after locations respectively.

Discussion

There were no statistically significant differences between any of the three treatments, which suggests that raccoons do not avoid areas of artificially increased coyote use.

This, coupled with an ongoing coyote diet analysis showing a lack of raccoons in coyote diet on the TYWC, suggests that coyotes may not be significant predators of raccoons in this system.

Confounding factors:
• Coyotes as a new predator in the SE
• Commercially available coyote urine may not represent wild coyotes
• Behavioral responses other than avoidance

References:
3. Acknowledgements: Artwork provided by Roger Hall (www.inkart.net). Thanks to C. Brig, B. Holt, B. Phalen, S. Miller and A. Cheek Smith for fieldwork. Project funded by SC DNR SERG and assistance provided by the Yawkey Foundation.