Electrochemically-Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion on Carbon Nanostructured Substrates

Tomás E. Benavidez  
*Clemson University*

Marissa E. Wechsler  
*Clemson University*

Madeleine M. Farrer  
*Clemson University*

Rena Bizios  
*Clemson University*

Carlos D. Garcia  
*Clemson University*

Follow this and additional works at: [http://tigerprints.clemson.edu/cars](http://tigerprints.clemson.edu/cars)

Part of the [Chemistry Commons](http://tigerprints.clemson.edu/cars)

**Recommended Citation**


[http://tigerprints.clemson.edu/cars/12](http://tigerprints.clemson.edu/cars/12)

This Poster is brought to you for free and open access by the Student Works at TigerPrints. It has been accepted for inclusion in 2016 Chemistry Annual Research Symposium by an authorized administrator of TigerPrints. For more information, please contact awesole@clemson.edu.
Electrochemically-Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion on Carbon Nanostructured Substrates

Tomás E. Benavidez, Marissa E. Wechsler, Madeleine M. Farrer, Rena Bizios, and Carlos D. Garcia
Department of Chemistry, Clemson University | cdgarc@clemson.edu

Abstract
The effect of electric potential on the adsorption of collagen type I onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs) is described. Adsorption was investigated as a function of the protein concentration and applied potential. The resulting substrate surfaces were characterized using spectroscopic ellipsometry (SE), atomic force microscopy (AFM), and cyclic voltammetry (CV). While the higher applied potential and protein concentration, the higher the adsorbed amount, the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the substrates under standard cell culture conditions was also affected by the potential applied and when the collagen type I was oxidized (under applied potential > +800 mV), hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion.

Mechanism and Results

Selected Protein
Collagen Type I was selected for these experiments
- Major structural protein, forming molecular cables that strengthen the tendons and vast, resilient sheets that support the skin and internal organs, bones and teeth
- Relatively simple protein composed of three chains, wound together in a tight triple helix
- Molecular dimensions: 1.5 nm x 1.5 nm x 300 nm
- Rod-like structure

Experimental Design
- Substrates were fabricated by pyrolysis of photosensitive (AZ P4330-RS; AZ Electronic Materials USA Corp.; Somerville, NJ), spin-coated over Si/SiO2 wafers
- Protein adsorption experiments were performed using a variable angle spectroscopic ellipsometer (VWASE; J.A. Woollam Co.; Lincoln, NE) by following the change in the reflectance and phase difference between the parallel (RP) and perpendicular (RS) components of a polarized light beam upon reflection from a surface.
- Adult Human Mesenchymal Stem Cells (hMSCs) were cultured under standard conditions in mesenchymal stem cell growth medium consisting of mesenchymal stem cell basal-medium supplemented with serum, L-glutamine, and gentamicin/amphotericin-B (passage number 3-5 were used for the experiments).
- hMSCs were seeded at 2500 cells/cm² on the surface of each substrate sample, allowed to adhere for 2 hours, fixed in situ, and stained using DAPI.

Conclusions
- The higher the applied potential, the higher the accumulation of collagen onto the substrate surfaces tested.
- Subsequent adhesion of hMSC was affected by the \( E_{\text{ads}} \) (which depends on the magnitude of the applied potential). The hMSC adhesion density observed on the OTCE substrate pre-adsorbed with collagen at OCP and +400 mV was similar to the results obtained on the “bare” OTCE, but increased when the collagen was pre-adsorbed at +800 mV.
- The lowest adhesion of hMSC on pre-adsorbed collagen on OTCE substrates at +1500 mV can be attributed to irreversible electrochemical oxidation of the adsorbed protein. This oxidation may affect the epitopes on the protein structure recognized by cell membrane receptors during the adhesion of hMSC, rendering the cell adhesion mechanism(s) unattainable.

Acknowledgements
Funding for our projects has been provided in part by