Date of Award

8-2017

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

School of Architecture

Committee Member

Dr. Dina Battisto, Primary Advisor

Committee Member

Dr. Vincent Blouin

Committee Member

Professor Daniel Harding

Abstract

Windows can have positive effects on hospital staff and patient health and well-being. Proper window design can also significantly benefit hospital energy conservation, consequentially reducing environmental impact. However, often the glazing and fenestration design of the hospital envelope can be heavily impacted by building components like structural and mechanical systems. The location of these building components at the exterior wall can lead to a reduction of glazing area, increase the use of electric lighting, and limit the potential benefits that glazing design can provide to occupants. The health benefits of glazing for building occupants have been well documented. Natural daylight and views to the outdoors have shown benefits to hospital patients and staff. The application of glazing in the hospital can have effects on patient well-being, reducing recovery time, length of stay, stress, depression, and medication use, improving patient satisfaction. Likewise, access to windows in the workplace improves staff well-being, increasing productivity, and job satisfaction, while reducing staff absenteeism, and turnover. Hospital occupants are involved in various types of activity resulting in a wide range of preferred lighting and thermal conditions. This makes it challenging to maintain ideal occupant lighting and thermal comfort levels and leads to a dependence on electric lighting and mechanical air conditioning. Hospitals have a high-energy intensity due to their complexity, density, and continuous occupancy. This energy intensity is further compounded by the size and scale of these buildings. The layout of glazing effects energy consumption for electric lighting and mechanical air conditioning, emissions and the resulting impact on the environment. This research will study the design factors effecting the application of glazing and their impact on the conditions within the patient room. An in-depth literature review studying the effects of glazing design on patient, staff, and environmental outcomes, along with documentation of established benchmarks and best practices will inform and quantify lighting, thermal, and energy metrics. A comparative case study research and analysis of three different approaches to glazing design in the patient room will evaluate varying built design factors and their impact on lighting, thermal, and energy performance. Using building information modelling alongside energy simulation and analysis software, it is possible to weigh the effects of various physical design considerations. Analyzing the lighting and thermal characteristics of three different approaches to window design in the patient room, this research will document the relationships between built features that impact fenestration design and the lighting and thermal metrics which are found to affect occupant health outcomes and building energy performance.

Share

COinS