Date of Award

8-2014

Document Type

Thesis

Degree Name

Master of Science (MS)

Legacy Department

Electrical Engineering

Advisor

Russell, Harlan B

Committee Member

Noneaker , Daniel

Committee Member

Wang , Kuang-Ching

Abstract

Efficient routing in mobile ad hoc networks (MANETs) is highly desired and connected dominating sets (CDS) have been gaining significant popularity in this regard. The CDS based approach reduces the search for a minimum cost path between a pair of source and destination terminals to the set of terminals forming the backbone network. Researchers over the years have developed numerous distributed and localized algorithms for constructing CDSs which minimize the number of terminals forming the backbone or which provide multiple node-disjoint paths between each pair of terminals. However none of this research focuses on minimizing the load at the bottleneck terminal of the backbone network constructed by the CDS algorithms. A terminal becomes a bottleneck if the offered traffic load is greater than its effective transmission rate. In this thesis we analyze the load-based performance of a popular CDS algorithm which has been employed in MANET routing and a k-connected k-dominating set (k-CDS) algorithm and compare it with our new centralized algorithm which has been designed to minimize the load at the bottleneck terminal of the backbone network. We verify the effectiveness of our algorithm by simulating over a large number of random test networks.

Share

COinS